AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI &

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(AICTE APPROVED AND NAAC ACCREDITED) Faculty of Engineering and Technology

REGULATIONS 2021 DEPARTMENT OF COMPUER SCIENCE AND ENGINEERING

Programme:

B.E – CSE (Artificial Intelligence and Machine Learning)

Full Time (4 Years)

CHOICE BASED CREDIT SYSTEM (CBCS)

Curriculum

(Semester I to VIII)

N. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

[Type text]

PROGRAMME OUTCOMES

Engineering Graduates will be able to:

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complexengineeringproblems
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles ofmathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and researchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modernengineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities And norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give And receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

M. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

Graduating Students of Artificial Intelligence and Machine Learning programme will be able to:

DCO1	Demonstrate understanding of the principles and working of the hardware and software
PSOI	Aspects of computer systems.
	Understand, analyse and develop computer programs in the areas related to algorithms, artificial intelligence and machine learning concepts, analysis of huge volume of data and
PSO2	implementation of networking for efficient design of computer based system of varying
	complexity.
	Apply standard concepts of artificial intelligence and machine Learning project development
	using open source programming environment to deliver a quality product for business
PSO3	success and to be acquainted with the contemporary issues. Latest trends in technological
	development and thereby innovative new ideas and solutions to existing problems using
	machine learning.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1	Technical Expertise: Implement fundamental domain knowledge of core courses for developing effective computing solutions by incorporating creativity and logical reasoning.
PEO2	Graduate will establish effective professionals by solving real world problems using investigative and analytical skills along with the knowledge acquired in the field of Artificial intelligence and Machine Learning.
PEO3	Graduate will prove an ability to work and communicate effectively as a team member and /or leader to complete the task with minimal resources, meeting deadlines.
PEO4	Graduate will demonstrate his/her ability to adapt to rapidly changing environment in advanced areas of Artificial Intelligence and machine Learning concepts and scale new height in their profession through lifelong learning.

Mitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

<u>STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM – REGULAR</u> <u>STUDENTS</u>

Sl. No.	Category of Courses	Types of C	Courses	Suggested Breakup of Credits (min – max)
1.		Humanities includingM	and Social Sciences Ianagement courses	9-12
2.	A Foundation	Basic Scien	ce courses	18 - 25
3.	Courses	Engineering workshop, o electrical/m	g Science courses including drawing, basics. Of hechanical/computer etc.	18 - 24
4.	B. Professional	Core course	es	48-54
		Professiona	al Electives	12
		Industry Do Industry	esigned/ Industry Supported/ Offered/ Industry Sponsored courses	6
5.	C. Elective Courses		Innovation, Entrepreneurship, Skill Development etc.	6-9
		Open Electives	Emerging Areas like 3D Printing, Artificial intelligence, Internet of Thingsetc.	6-9
	D. Courses for	Project wor	rk	8
	Presentation of technical Skills	Mini Projec	ct	3
	related to the	Seminar		1
6.	specialization	Internship i	in industry or elsewhere	3
	**E.	Environmen	ntal Sciences, Induction	Zero credit
	Mandatory	training, Inc	lian Constitution, Essence of	(Minimum 2 courses to be
7	Courses	Indian Trad	litional Knowledge,	completed other than yoga and
/.		Employabil	ity Enhancement Value Added	Practice)
		Courses, Yo	Dga/NCC/NSS/RRC/YRC/	
		Sports and	Games, Student Clubs, Unnat	
		вnarat Abh	iyan, Swacnn Bharat etc.	160
** TI	· · · · · · · · · · · · · · · · · · ·		initiality of earlied	

** The credits earned in category 'E' Courses will not be counted in CGPA calculation forawarding of the degree.

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

STRUCTURE OF UNDERGRADUATE ENGINEERING PROGRAM -

SI. **Category of** Suggested Breakup **Types of Courses** Courses of Credits(110 – 120) No. Humanities and Social Sciences 1. 3 - 6includingManagement courses 2. Basic Science courses 3 - 6A. Foundation Engineering Science courses Courses includingworkshop, drawing, basics 3. 5 - 9of electrical/mechanical/computer etc. 4. **B.** Professional Core courses 48-54 **Professional Electives** 12 Industry Designed/ Industry Supported/ 6 IndustryOffered/ Industry Sponsored Courses C. Innovation, Entrepreneurship, 5. Elective 6-9 Skill Development etc. Courses Open Emerging Areas like 3D Elective Printing, Artificial Intelligence, s 6-9 Internet of Things etc. Project work 8 **D.** Courses for Mini Project 3 Presentation of Seminar 1 6. technical Skills Internship in industry or elsewhere 3 related to the specialization Zero credit **Environmental Sciences**, Induction training, Indian Constitution, Essence of (Minimum 2 Indian Traditional Knowledge, courses to be **E. Employability Enhancement Value Added 7. completed) Mandatory Courses, Yoga/NCC/NSS/RRC/YRC/ Courses Sports and Games, Student Clubs, Unnat Bharat Abhiyan, Swachh Bharat etc. Minimum Credits to be earned 120 ** The credits earned in category 'E' Courses will not be counted in CGPA calculation for awarding of the degree.

LATERAL ENTRY STUDENTS

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

DEPARTMENT COMPUTER SCIENCE AND ENGINEERING CSE (Artificial Intelligence and Machine Learning)

Regulation -2021

CURRICULUM

		A.Foun	dation Course	S					
	н	umanities and Social Sciences in	cluding Mana	gement cou	irses	–Cre	dits(9-12)	I
SI No	Course Code	Course	Offering Dept.	Category	L	т	Р	С	Pre - requisite
1	34121H01	TECHNICAL ENGLISH	ENG	FC-HS	3	0	0	3	NIL
2	34121H04	BUSINESS ENGLISH	ENG	FC-HS	3	0	0	3	NIL
3	34121H81	ENGLISH LANGUAGE LAB	ENG	FC-HS	0	0	4	2	NIL
4	34121H82	PROFESSIONAL COMMUNICATION AND PERSONALITY DEVELOPMENT LAB	ENG	FC-HS	0	0	2	1	NIL
5	34121H02	TOTAL QUALITY MANAGEMENT	MANAG	FC-HS	3	0	0	3	NIL
6	34121H83	UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY	ENG	FC-HS	3	0	0	3	NIL
		Basic Science (Courses-Cred	its(18-25)					
SI No	Course Code	Course	Offering Dept.	Category	L	т	Р	с	Pre - requisite
1	34121B01	ENGINEERING MATHEMATICS	MATH	FC-BS	2	1	0	3	NIL
2	34121B10	MATHEMATICS FOR COMPUTER ENGINEER ING	MATH	FC-BS	2	1	0	3	NIL
3	34121B04	PHYSICAL SCIENCES	PHY & CHEM	FC-BS	4	0	0	4	NIL
4	34121B14	NUMERICAL METHODS AND NUMBER THEORY	MATH	FC-BS	2	1	0	3	NIL
5	34121B17	PROBABILITY AND QUEUING THEORY	MATH	FC-BS	2	1	gi	ja) .	NIL NIL
6	34121B05	SMART MATERIALS AND NANO TECHNOLOGY	PHY	FC-BS	3	C DP.	M.ON	ITBIY	PHYSICAL SCIENCES
7	34121B21	DISCRETE MATHEMATICS	MATH	FC-BS 🏴	V.M.	K.V.	Engg.	Seich	ce & Engs

8	34121B36	STATISTICAL FOUNDATION	MATH	FC-BS	2	1	0	3	NIL
9	34121B81	PHYSICAL SCIENCES LAB	PHY & CHEM	FC-BS	0	0	4	2	NIL
10	34121B19	ENVIRONMENTAL SCIENCES	PHY	FC-BS	3	0	0	3	NIL
11	34121B27	MATHEMATICS FOR DATA SCIENCE	MATH	FC-BS	2	1	0	3	NIL
12	34121B26	MATHEMATICS FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	MATH	FC-BS	2	1	0	3	NIL
Engineering Science courses including Workshop ,Drawing ,Basics of Electrical/Mechanical/Computer etc., Credits –(18-24)								Computer etc.,	
SI No	Course Code	Cour	Offering Dept.	Category	L	т	Ρ	С	Pre - requisite
1	35021E01	FOUNDATIONS OF COMPUTING AND PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL
2	34621E01	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	EEE & ECE	FC-ES	4	0	0	4	NIL
3	35021E02	PYTHON PROGRAMMING (THEORY AND PRACTICALS)	CSE	FC-ES	2	0	2	3	NIL
4	34421E01	BASICS OF CIVIL AND MECHANICAL ENGINEERING	CIVIL & MECH	FC-ES	4	0	0	4	NIL
5	34621E81	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB	EEE & ECE	FC-ES	0	0	4	2	NIL
6	34421E84	ENGINEERINGSKILLSPRAC TICALS LAB	CIVIL & MECH	FC-S	0	0	4	2	Nil
7	34421E81	ENGINEERING GRAPHICS AND DESIGN	MECH	FC-ES	1	0	4	3	NIL
8	35021E03	PROGRAMMING FOR PROBLEM SOLVING	CSE	FC-ES	3	0	0	3	NIL
		B. Professional Cor	e Courses –Ci	redits(48-54	•)				
SI No	Course Code	Course	Offering Dept.	Category	L	т	Ρ	С	Pre - requisite
1	35021C04	DATA STRUCTURES	CSE	CC	3	Dor. 1	M ₀ N	ITHY & He	A, NIL
2	35021C18	OPERATING SYSTEM (THEORY AND PRACTICALS)	CSE	CC P	vgM.	f Con K ₀ V. 1	nputer Engg	Scien Colleg	ce & Engs ce, Salem, NIL

3	35021C05	DESIGN AND ANALYSIS OF ALGORITHMS	CSE	CC	3	0	0	3	NIL
4	35021C04	DATABASE MANAGEMENT S YSTEMS	CSE	CC	3	0	0	3	NIL
5	35021C09	COMPUTER NETWORKS (THEORY AND PRACTICALS)	CSE	CC	3	0	2	4	NIL
6	35021C13	SOFTWARE ENGINEERING	CSE	CC	3	0	0	3	NIL
7	35021C12	ARTIFICIAL INTELLIGENCE	CSE	CC	3	0	0	3	NIL
8	35921C01	OBJECT ORIENTED PROGRAMMING (THEORY AND PRACTICALS)	AIDS	CC	3	0	2	4	NIL
9	35921C07	JAVA PROGRAMMING (THEORY AND PRACTICALS)	AIDS	СС	3	0	2	4	NIL
10	37021C03	NTERNET OF THINGS	AIML	CC	3	0	0	3	NIL
11	35921C08	MACHINE LEARNING	AIDS	СС	3	0	0	3	NIL
12	35921C04	DEEP LEARNING	AIDS	СС	3	0	0	3	NIL
13	37021C01	ARTIFICIAL INTELLIGENCE AND AGENTS	AIML	CC	3	0	0	3	NIL
14	35921C02	BIG DATA AND ANALYTICS	AIDS	CC	3	0	0	3	NIL
15	35921C03	DATA ANALYTICS USING PYTHON	AIDS	СС	3	0	0	3	NIL
16	35021C19	THEORY OF COMPUTATION	CSE	CC	3	0	0	3	NIL
17	37021C02	DIGITAL PRINCIPLES AND SYSTEM DESIGN (THEORY AND PRACTICALS)	AIML	CC	3	0	2	4	Nil
18	35921C82	DEEP LEARNING LAB	AIDS	СС	0	0	4	2	NIL
19	35921C83	MACHINE LEARNING LAB	AIDS	CC	0	0	4	2	NIL
20	35021C85	ARTIFICIAL INTELLIGENCE LAB	CSE	CC	0	0	4:	8.1	M NIL
21	35021C83	DATABASE MANAGEMENT SYSTEMS LAB	CSE	CC	0	Dr. 1	A.N	THY.	A, NIL
22	35021C82	DATA STRUCTURES LAB	CSE	CC 🏾	Y.M.	f Com	Prof puter ingg. (Seiene Cellege	e & Engg , Salem.NIL

		C. Elective Co	ourses						
		Professional Elective C	ourses Credits	-(12)					
SI No	Course Code	Course	Offering Dept.	Category	L	т	Ρ	с	Pre - requisite
1	35921P11	NEURAL NETWORKS	AIDS	EC-PS	3	0	0	3	Nil
2	35921P05	HUMAN COMPUTER INTERACTION	AIDS	EC-PS	3	0	0	3	NIL
3	35921P25	NATURAL LANGUAGE PROCESSING	CSE	EC-PS	3	0	0	3	NIL
4	35921P12	REINFORCEMENT LEARNING	AIDS	EC-PS	3	0	0	3	Nil
5	37021P02	INTELLIGENT DATABASE MANAGEMENT SYSTEMS	AIML	EC-PS	3	0	0	3	NIL
6	35921P10	KNOWLEDGE BASED DECISIONSUPPORT SYSTEM	AIDS	EC-PS	3	0	0	3	NIL
7	35921P14	VIRTUALIZATION TECHNIQUES	AIDS	EC-PS	3	0	0	3	NIL
8	35921P07	INTRODUCTION TO DRONES	AIDS	EC-PS	3	0	0	3	NIL
9	35921P01	BIO SYSTEMS WITH AI	AIDS	EC-PS	3	0	0	3	NIL
10	35921P04	GENETIC ALGORITHMS AND FUZZYLOGIC SYSTEMS	AIDS	EC-PS	3	0	0	3	NIL
11	35921P09	KERNEL METHODS FOR MACHINELEARNING	AIDS	EC-PS	3	0	0	3	MACHINE LEARNING
12	37021P01	HEALTH CARE ANALYTICS	AIML	EC-PS	3	0	0	3	NIL
13	35921P02	COMPUTER VISION	AIDS	EC-PS	3	0	0	3	NIL
14	37021P03	VIRTUAL REALITY AND AUGMENTED REALITY	AIML	EC-PS	3	0	0	3	NIL
15	35021P28	R PROGRAMMING	CSE	EC-PS	3	0	0	3	NIL
16	35021P09	CYBER SECURITY PRINCIPLES	CSE	EC-PS	3	0	0	3	NIL
	Industr	y Designed/ Industry Supported/ Industry	Offered/ Indus / Crea	try Sponso dits-(6)	red	cou	rses	-	
1	34121107	BUSINESS INTELLIGENCE AND ITS APPLICATIONS	Infosys	EC-IE	3	0	0	3	NIL
2	34121106	BUILDING ENTERPRISE APPLICATIONS	INFOSYS	EC-IE	3	0	0	3	Nil
3	34121115	INTERNET AND WEB TECHNOLOGY	INFOSYS	EC-IE	3	0	0	3	NIL
4	35021101	LEARNING IT ESSENTIALS BY DOING	INFOSYS	EC-IE	3	0	0	3	Nil

5	34121113	ESSENTIALS OF INFORMATION TECHNOLOGY	INFOSYS	EC-IE	3	0	0	3	NIL
6	34121116	INTRODUCTION TO MAIN FRAMES	INFOSYS	EC-IE	3	0	0	3	NIL
7	34121120	MOBILE APPLICATION DEVELOPMENT	INFOSYS	EC-IE	3	0	0	3	NIL
8	34121110	CYBER FORENSICS	AVANZO TECH	EC-IE	3	0	0	3	NIL
9	34121109	CRYPTOGRAPHY AND NETWORK SECURITY	AVANZO TECH	EC-IE	3	0	0	3	NIL
10	34121108	CLOUD DATABASE MANAGEMENT AND SECURITY	SALEM INFOTECH	EC-IE	3	0	0	3	NIL

Open Electives - Electives from Innovation, Entrepreneurship, Skill Development etc. Credits -(6-9)

SI No	Course Code	Course	Offering Dept.	Category	L	Т	Ρ	С	Pre - requisite
1.	34121003	FINANCE AND ACCOUNTING FOR ENGINEERS	MANAG	OE-IE	3	0	0	3	NIL
2.	34121004	INNOVATION, PRODUCT DEVELOPMENT AND COMMERCIALIZATION	MANAG	OE-IE	3	0	0	3	NIL
3.	34121007	SOCIAL ENTREPRENEURSHIP	MANAG	OE-IE	3	0	0	3	NIL
4.	34121006	NEW VENTURE PLANNING & MANAGEMENT	MANAG	OE-IE	3	0	0	3	NIL
5.	34121001	ENGINEERING START-UPS ANDENTREPRENEURIAL	MANAG	OE-IE	3	0	0	3	NIL
6.	34121002	INTELLECTUAL PROPERTY RIGHTS	MANAG	OE-IE	3	0	0	3	NIL

Open subjects-Electives from other Emerging Areas Credits-(6-9)

SI No	Course Code	Course	Offering Dept.	Category	L	т	Ρ	С	Pre - requisite
1.	34421001	3D PRINTING AND ITS APPLICATIONS	MECH	OE-EA	3	0	0	3	NIL
2.	34421002	INDUSTRIAL ROBOTICS	MECH	OE-EA	3	0	0	3	NIL
3.	36921001	BIOMOLECULES – STRUCTURE AND FUNCTION	PE	OE-EA	3	F	02	3	NIL
4.	36921002	PHARMACOGENOMICS	PE	OE-EA	2/2	0	0	3	NIL
5.	34221002	MUNICIPAL SOLIDS WASTE MANAGEMENT	CIVIL	OE-EA Dept. of Con Y.M.K.V.	3Pro npute Engg	for Scie	laad. nce ege,	& ³ En; Salea	s NIL

6	34221001	DISASTED DISK MANAGEMENT	CIVIL	OE-EA	3	0	0	3	NIL	
0.					- -	0	0	2	NIII	
7.	34621001	GREEN POWER GENERATION SYSTEMS	EEE	UE-EA	3	U	U	3	NIL	
8.	34621002	INDUSTRIAL DRIVES AND AUTOMATION	EEE	OE-EA	3	0	0	3	NIL	
9.	38121001	FOOD AND NUTRITION TECHNOLOGY	BTE	OE-EA	3	0	0	3	NIL	
10.	38121002	INTRODUCTION TO BIOFUELS	BTE	OE-EA	3	0	0	3	NIL	
11.	35321003	PRINCIPLES OF BIOMEDICAL INSTRUMENTATION	BME	OE-EA	3	0	0	3	NIL	
12.	35321002	BIOSENSORS AND TRANSDUCERS	BME	OE-EA	3	0	0	3	NIL	
13.	34721002	INTRODUCTION TO INDUSTRY 4.0 AND INDUSTRIAL INTERNET	ECE	OE-EA	3	0	0	3	NIL	
		OFTHINGS								
14.	34721001	DESIGN OF ELECTRONIC EQUIPMENT	ECE	OE-EA	3	0	0	3	NIL	
	D.C	D.CoursesforPresentationofTechnicalSkillsrelatedtothespecialization(15)								
SI No	Course Code	Course	Offering Dept.	Category	L	т	Р	С	Pre - requisite	
<mark>SI No</mark> 1.	Course Code	Course PROJECT WORK	Offering Dept. AIML	Category PI-P	L 0	т 0	P 16	C 8	Pre - requisite NIL	
<mark>SI No</mark> 1. 2.	Course Code 37021R01 37021M81	Course PROJECT WORK MINI PROJECT	Offering Dept. AIML AIML	Category PI-P PI-M	L 0	T 0	P 16 6	c 8 3	Pre - requisite NIL NIL	
SI No 1. 2. 3.	Course Code 37021R01 37021M81 37021S81	Course PROJECT WORK MINI PROJECT SEMINAR	Offering Dept. AIML AIML AIML	Category PI-P PI-M PI-S	L 0 0	T 0 0 0	P 16 6 2	c 8 3 1	Pre - requisite NIL NIL NIL	
SI No 1. 2. 3. 4.	Course Code 37021R01 37021M81 37021S81 37021T81	Course PROJECT WORK MINI PROJECT SEMINAR INTERNSHIP	Offering Dept. AIML AIML AIML AIML	Category PI-P PI-M PI-S PI-IT	L 0 0 0 3 V	T 0 0 0 Weeks	P 16 6 2	c 8 3 1 3	Pre - requisite NIL NIL NIL NIL	
SI No 1. 2. 3. 4.	Course Code 37021R01 37021M81 37021S81 37021T81	Course PROJECT WORK MINI PROJECT SEMINAR INTERNSHIP E. Mandatory courses (No Credits	Offering Dept. AIML AIML AIML AIML (Not included	Category PI-P PI-M PI-S PI-IT	L 0 0 3 V calc	T 0 0 0 Weeks ulati	P 16 6 2 0ns)	C 8 3 1 3	Pre - requisite NIL NIL NIL NIL	
SI No 1. 2. 3. 4. SI No	Course Code 37021R01 37021M81 37021S81 37021T81 Course Code	Course PROJECT WORK MINI PROJECT SEMINAR INTERNSHIP E. Mandatory courses (No Credits Course	Offering Dept. AIML AIML AIML AIML Offering Dept.	Category PI-P PI-M PI-S PI-IT I for CGPA Category	L 0 0 3 \ Calc L	T 0 0 0 Veeks ulati	P 16 2 0ns) P	с 8 3 1 3 3 С	Pre - requisite NIL NIL NIL NIL Pre - requisite	
SI No 1. 2. 3. 4. SI No 1	Course Code 37021R01 37021M81 37021S81 37021T81 Course Code 34121Z81	Course PROJECT WORK MINI PROJECT SEMINAR INTERNSHIP E. Mandatory courses (No Credits) Course Yoga and Meditation	Offering Dept. AIML AIML AIML AIML Offering Dept. PHED	Category PI-P PI-M PI-S PI-IT for CGPA Category AC	L 0 0 3 \ calc L	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 16 2 0ns) P 2	c 8 3 1 3 c 0	Pre - requisite NIL NIL NIL NIL NIL Pre - requisite NIL	
SI No 1. 2. 3. 4. SI No 1	Course Code 37021R01 37021M81 37021S81 37021T81 Course Code 34121Z81	Course PROJECT WORK MINI PROJECT SEMINAR INTERNSHIP E. Mandatory courses (No Credits) Course Yoga and Meditation Any two of the	Offering Dept. AIML AIML AIML AIML Offering Dept. PHED Following Course	Category PI-P PI-M PI-S PI-IT for CGPA Category AC	L 0 0 3 V calc L 0	T 0 0 0 Veeks ulati T 0	P 16 2 2 0ns) P 2	c 8 3 1 3 c 0	Pre - requisite NIL NIL NIL NIL Pre - requisite NIL	

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3	34121Z83	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	GEN	AC	0	0	2	0	NIL
4	34121Z84	INDIAN CONSTITUTION	LAW	AC	0	0	2	0	NIL
5	34121Z86	SPORTS AND GAMES	PHED	AC	0	0	2	0	NIL
6	34121Z85	NCC / NSS / RRC / YRC/ STUDENT CLUBS/UNNAT BHARATH ABHIYAN/SWACTH BHARAT	GEN	AC	0	0	2	0	NIL

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

3412	1H01				TECH	INICA	LENGLIS	н			Categ	gory	L	Т	Р	Credit
0					1201						FC-ł	HS	3	0	0	3
PREA Techni commu outcon compe PRER	MBLE cal Eng inicatio ne of the tency ir EQUIS	glish is on skills e cours n Englis SITE: BJECT	a life s in En e is to l sh lang NIL IVES	skill c glish, e help the uage ar	ourse r ssentia e studer id there	necessar I for un nts acqu by mak	y for all st derstanding ire the lang ing the stud	udents and ex uage sl lents co	of Eng cpressin cills of mpeter	gineering ng the ido Listening nt and em	and Te eas of d g, Speak ployable	echnol ifferer ing, R e in th	logy. nt pro Readir ne glo	It aims fessior ig and balised	s at de nal cont Writing scenar	veloping ext. The g io.
1.	To en	able stu	idents	to deve	lop LSI	XW SK1	ls in Englis	h. (List	ening,	Speaking	g, Readir	ng, an	d Wri	ting.)		
2.	To ma	ake the	m beco	ome eff	ective of	commur	nicators									
3.	To en	sure the	at learn	ers use	Electr	onic me	edia materia	ls for d	evelop	ing langu	lage					
4.	To aid	d the stu	udents	with en	nployał	oility sk	ills.									
5.	To de	velop t	he stud	ents co	mmuni	cation s	kills in forn	nal and	inform	al situati	ons					
COUF	COURSE OUTCOMES															
On the	succes	sful coi	mpletio	on of the	e cours	e, stude	nts will be a	ble to								
CO1.	Listen, 1	rememl	ber and	respon	d to otl	ners in c	lifferent sco	enario				R	Remer	nber		
CO2.	Underst	tand ar	nd spea	k fluer	tly and	l correc	tly with co	prrect p	ronunc	iation in	differei	nt U	Inders	stand		
CO3. 7	Fo mak	e the st	udents	experts	in pro	fessiona	l writing					A	Apply			
CO4	To mak	e the st	udents	in prof	cient te	chnical	communic	ator				A	pply			
CO5 . 7	Го mak	e the st	udents	recogn	ize the	role of	technical wi	riting ii	n their o	careers in	1	A	nalyz	ze		
busine MAPE	ss, techi PING W	nical ai	nd sciel	RAMN		гсом	ES AND PI	RUCR	AMM	E SPECI	FIC OI		ME	3		
			DO										///1124			
COS	PO1	PO 2	PO 3	4	PO 5	PO6	PO7	PO 8	РО 9	PO10	1	PO1	2	PSU 1	PSO2	PSO3
CO1	-	-	-	L	L	Μ	М	М	-	S	-	S		S	-	S
CO2	-	-	-	-	-	-	L	-	-	S	-	S		М	-	S
CO3	-	-	-	L	-	-	-	L	-	-	-	L		М	Μ	-
CO4	L	-	-	-	-	Μ	-	L	Μ	S	L	S		S	М	S
CO5	M	-	L	S	-	-	-	-	-	-	-	S		М	-	S
S- Stro	ong; M-l	Mediur	n; L-Lo	WC												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English -Scientific Vocabulary (definition and meaning)– Technical Abbreviations and Acronyms -Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

STRESS

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks, New Norms) - Extempore.

SPEAKING SKILLS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue- Interpersonal Skills.

READING SKILLS

English as language of Opportunity and Employability- Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming-Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation – Technical Jargons

TECHNICAL WRITING

Sentence Pattern (SVOCA) - Statement of Comparison – Trans coding (Flow Chart, Bar Chart and Pie Chart) – Informal and Formal letters – Application letter- Resume Writing- Difference among Bio data, Resume and Curriculum Vitae.

ТЕХТВООК

1. English for Engineers- Faculty of English – VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications, 2002.

(COUR	SE DESIGNERS			
	S. No	Name of the Faculty	Designation	Department/Name of the College	Mail ID
	1.	Dr. Jennifer G Joseph	Prof. and Head, H&S	English / AVIT	jennifer@avit.ac.in
	2.	Dr.P.Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3412 [,]	1H04				BUSIN	IESS I	ENGLI	SH			Catego	ory	L	Г	Р	Credit
											FC-H	S	3	0	0	3
PREA	MBLE															
Langua	ige is or	ne of th	e most	valued	posses	sions of	f men.]	It acts a	as a rep	ository o	f wisdom	. Among	all other	langı	uages I	English,
the inte	ernation	al lang	uage p	olays a	vital ro	ole as a	a prope	ller for	the ac	lvanceme	ent of kn	owledge	in differ	ent fi	ields a	nd as a
telesco	pe to vi	ew the	dream	of the f	uture.											
PRER	EQUIS	ITE: N	IL													
COUR	SE OB	JECTI	VES													
1.	To impart and enhance corporate communication.															
2.	To enable learners to develop presentation skills															
3.	To build confidence in learners to use English in Business context															
4.	To ma	ke ther	n exper	ts in pr	ofessio	nal wri	ting									
5.	To equ	ip stuc	lents w	ith emp	loyabil	ity and	job sea	rching	skills							
COUR	SE OU	TCOM	IES													
On the	success	ful con	pletion	n of the	course	, studer	nts will	be able	e to							
CO1. (Commu	nicate v	vith a r	ange of	formal	and int	formal	context				Un	derstand			
CO2. I	Demons	trate In	teractio	on Skill	s And C	Conside	er How	Own C	ommu	nication I	s Adjuste	ed Ap	ply			
In Diff	erent Sc	enario														
CO3. U	Jse stre	ngthene	ed oral	and wri	tten ski	lls in th	ne busir	ness con	ntext			Ap	ply			
CO4. (Create in	nterest i	in a top	ic by e	ploring	g thoug	hts and	ideas				Ар	ply			
CO5. H	Have be	etter per	formai	nce in tl	ne art o	f comm	nunicati	on				Ар	ply			
MAPP	ING W	ITH P	ROGR	RAMM	E OUT	COM	ES ANI	D PRO	GRAN	IME SPI	ECIFIC	OUTCO	MES			
COC	DO1	PO	PO	PO	PO	PO	PO	PO	PO	DO10	DO11	DO12	DCO	1 T		DCO2
COS	POI	2	3	4	5	6	7	8	9	POIO	POII	POIZ	P50		PSO2	PS03
CO1	М	-	L	-	L	S	S	-	М	S	-	S	S		-	-
CO2	-	М	S	М	-	М	М	-	L	S	-	S	Μ		-	-
CO3	L	М	-	-	-	Μ	-	L	-	S	L	Μ	-		Μ	-
CO4	-	L	Μ	Μ	-	-	L	Μ	Μ	S	L	Μ	Μ		-	Μ
CO5	-	L	-	М	-	L	L	-	-	S	-	S	М		Μ	S
S Stro	na MN	Andium	. I I o	337												

S- Strong; M-Medium; L-Low

SYLLABUS

Basics of Language and Listening Skills: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills

STRESS: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology) Jargons- Technical and Business

SPEAKING SKILLS AND READING SKILLS: Extempore, Listening to TED Talks and discussion on the topic heard, Speaking activities- pair and group designed by the faculty, Group Discussion-Types of Interviews, Watching Documentary Films and Responding to Questions, Reading Skills-Understanding Ideas and making Inferences-- FAQs $^{-}$ E - Mail Netiquette - Sample E – mails, Critical Reading-Book Review-Finding Key Information and Shifting Faets from Opinions

CORPORATE COMMUNICATION: What isCorporate Communication? TypesDrom Office Communications -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences **WRITING SKILLS** Technical Articles – Written communication Project Proposals-Making Presentations on given Topics – Preparing Power Point Presentations-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) – Expansion of an Idea-Creative Writing.

TEXTBOOK

1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCE BOOKS

- 1. Grammar Builder I, II, III Cambridge University Press.
- 2. Technical English Writing, Reading and Speaking Pickett and Lester, Harper and Row

Course Designers:

S. No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1.	Dr. Jennifer G Joseph	Professor & Head	English / AVIT	jennifer@avit.ac.in
2.	Dr. P. Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121	1H81		ENGLISH LANGUAGE LAB Category L T P											Credit	
											FC-HS	0	0	4	2
PREAN English produci	MBLE Langua ing lang	age Lal uage sk	boratory	y provic ough int	les tecl teractiv	nnologi ve lessor	cal support	port to commu	students nicative	s. It acts mode of	as a pla teachir	atform for 1g.	learnin	g, prac	cticing and
PRER	EQUIS	ITE: N	IL												
COUR	SE OB.	JECTI	VES												
1.	To un	derstan	d com	nunicati	ion nui	sances i	n the co	orporat	e sector.						
2.	To un	derstan	d the ro	ole of m	other to	ongue in	n secon	d langu	lage lear	ning and	to avoi	id interfere	ence of 1	nother	tongue.
3.	To im	prove tl	ne oral	skills of	the stu	idents c	ommun	nicate e	ffective	ly throug	h differ	ent activit	ies		
4.	To une	derstan	d and aj	pply the	teleph	one etic	quette								
5.	Case s	study to	unders	tand the	e practi	cal aspe	ects of c	ommu	nication						
COUR	SE OU	тсом	IES												
On the	success	ful com	pletion	of the c	course,	student	s will b	e able	to						
CO1. (Give bes	st perfo	rmance	in grou	ıp discu	ission a	nd inter	rview				Understan	nd		
CO2. E	Best perf	est performance in the art of conversation and public speaking. Apply													
CO3. (Bive better job opportunities in corporate companies Apply														
CO4. E experie	Better understanding of nuances of English language through audio-visual Apply ience and group activities														
CO5. S employ	CO5. Speaking skills with clarity and confidence which in turn enhances their Apply employability skills														
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
CO1	-	S	М	S	-	L	-	-	S	S	М	-	-	-	M
CO2	М	-	-	-	-	-	-	-	М	S	-	М	М	-	М
CO3	М	-	-	-	-	-	-	-	-	S	-	М	-	-	М
CO4	М	-	-	-	-	-	-	-	-	М	-	-	М	-	М
CO5	М	-	-	S	-	-	-	-	-	М	-	-	М	-	S
S- Stro	ng; M-N	Aedium	; L-Lov	N											
SYLLA MODU songs, Y MODU Activity MODU case stu Play MODU MODU Course	 SYLLABUS MODULE I: Ice Breaker, Grouping, Listening- (Hearing and listening)- Active Listening- Passive Listening – Listening to songs, videos and understanding- (fill in the blanks) Telephone Conversation MODULE II: Influence of mother tongue, videos, understanding nuances of English language (video) puzzle to solve, Activity. MODULE III: Why is English important, Communication skills, TED (video) Communication in different scenario – a case study, ingredients of success, Activity – chart, speak the design, feedback on progress, Group wise, Individual. Role Play MODULE IV: Telephone Etiquette, Dining Etiquette, Meeting Etiquette, Corporate Etiquette, Business Etiquette. MODULE V: Case study of Etiquette in different scenario. 														
C NI	B_		the E	l4		D			Depa	rtment/N	lame		Ъ <i>Т</i> _•		

S.No	Name of the Faculty	Designation	Department/Name of the College	Mail ID
1.	Dr. Jennifer G Joseph,	Prof. and Head, H&S	English / AVIT	jennifer@avit.ac.in
2.	Dr.P.Saradha	Associate Professor	English / VMKVEC	saradhap@vmkvec.edu.in
				Dr. M. NITHYA, Prof & Head.
			Dept.	of Computer Science & Engs

V.M.K.V. Engg. College, Salem.

3412	1H82		PROF	ESSIO	NAL C	OMMU	UNICA	TION	AND	0	Categor	y L	Т	Р	C	redit
			PER	SUNA.		JEVEL	OPME	LINI LA	AB		FC-HS	0	0	2		1
PREN To de words styles	IABLE velop st and set based of	: tudents ntences n the co	with g clearly ommun	good pr and ef	esentati fectivel being u	on and ly. Dev sed.	writin elop pr	g skills oper lis	(Profe tening	ssionally skills. Ui	& tech nderstan	nically). d differe	Articu ent writi	late a ng te	nd en chniqu	unciate les and
PRER	EQUIS	ITE: N	NIL													
COUR	SE OB.	JECTI	VES													
1.	To dev	velop co	ommun	ication	and per	sonality	y skills.									
2.	 To improve Aptitude skills, train to improve self-learning / researching abilities, presentation skills & technical writing. To improve students employability skills. 															
3.	To im	prove s	tudents	employ	yability	skills.										
4.	To dev	velop p	rofessio	onal wit	h ideali	stic, pra	actical a	and mor	al value	es.						
5.	To pro	oduce c	over let	ters, res	sumes a	nd job a	applicat	tion stra	tegies.							
COUR	SE OU	тсом	IES													
On the	On the successful completion of the course, students will be able to															
CO1.	Improve	e comm	unicati	on and j	persona	lity skil	lls.					Apply				
CO2. I	Demonst	rate eff	ective u	use of te	eam wo	rk skills	s and pi	resentat	ion skil	ls to com	plete	Apply				
given t	asks.															
student	Speak w is.	ith clar	ity and	confide	ence the	reby en	hancing	g emplo	yability	y skills of	the	Apply				
CO4. H	Have bal	anced	value sy	/stem th	nat can l	be pract	ticed for	r enhan	ced pro	fessional	life.	Apply				
CO5. I	mprove	their v	ocabula	ry and	use ther	n in app	propriat	te situat	ion			Understa	and			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPEC	CIFIC (DUTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO	1 P S	502	PSO3
											1					
CO1	Μ	Μ	-	-	-	М	Μ	-	Μ	S	-	-	-		-	-
CO2	Μ	-	-	-	-	-	-	-	S	M	-	-	-		-	-
CO3	-	-	-	-	-	-	Μ	-	S	S	-	-	-		-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
CO5	205 S M S - M															
S- Stro	ng; M-N	/ledium	i; L-Lov	W												

UNIT – I: COMMUNICATION AND SELF DEVELOPMENT: Basic Concepts of Communication; Barriers in Communication; How to Overcome Barriers to Communication, Barriers and Filters in Listening Skill, Active and Passive listening, exposure to English language through various activities and maintaining a vocabulary dairy improving confidence in Language usage using activities,

UNIT – II: GRAMMAR & SYNTAX: Subject verb concord, tenses, Homophones, Homonyms, Spotting errors.

N. Hit

UNIT – III. READING AND WRITING SKILLS: Reading Comprehension; and suggesting title for given passage Back office job for organizing a conference / seminar (member of organizing committee and submit a report); Jumbled sentences, respond to real time advertisement and prepare a covering letter with CV. **UNIT IV. SPEAKING SKILLS AND ESSENCE OF SOFT SKILLS:** Hard and soft Skills; Feedback Skills; Skills of Effective Speaking; Component of an effective Talk; how to make an effective oral presentation, Time management, Team work skills, Leadership skills, Adaptability and bettering oneself, Persuasion skills.

UNIT V TECHNICAL REPORT, RESEARCH CASE STUDY & REPORTING: Types and Structure of Reports; Collecting Data; Technical Proposals; Visual Aids; General Tips for Writing Reports. Research Case Study and reporting, how to make an effective power point presentation

ТЕХТВООК

1. The Functional Aspects of Communication Skills, Prajapati Prasad and Rajendra K.Sharma, S. K Kataria& Sons, New Delhi, Reprint 2007

REFERENCES

- 1. Business Communication, Sinha K. K. S. Chand, New Delhi.
- 2. Business Communication, Asha Kaul, Prentice Hall of India

3. Business Correspondence and Report Writing A Practical Approach to Business and Technical Communication, Sharma, R.C.and Krishna Mohan, Tata Mc Graw – Hill.

Course Designers:

COUR	SE DESIGNERS	
S.No.	Name of the Faculty	Mail ID
1.	Dr. Jennifer G Joseph, Prof. and Head	jennifer@avit.ac.in
2.	Dr. P.Saradha, Associate Professor	saradhap@vmkvec.edu.in

N.Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

							- T	~	at a = -:		т	T	р	n	J:4
3412100	2 7	ГОТА	L QUA	LITY	MANA	GEME	NT	C	ategor	y	L	ľ	ľ	Cre	eait
0 7 121110									FC-HS		3	0	0		3
PREAM Quality is Total Qu fundamen providing be require	BLE: s the ality ntal m g qualited to c	mantra Manag nanagen ity of p levelop	for sugement gement tec roducts o custor	ccess ((TQM chnique and pr ner focu	or even) is an os, exist ocesses us and i	for the n enhanc ing impr . It becom nvolve es	e surv cemen covem mes e mploy	vival o at to the ent efforts ssential vees to o	f any ne tradi orts, an to surv continu	organiza itional v d technic vive and ally imp	ation in vay of o cal tools grow in rove Qua	this co doing b under a global n ality and	mpetitive usiness. disciplin narkets, o keep sus	e global TQM ir ned appro organizati stainable	market. ntegrates bach for lons will growth.
PRERE(QUIS	ITE: N	IL												
COURS	E OB.	JECTI	VES:												
1. To unc	lersta	nd the	Гotal Q	uality N	Aanage	ment cor	ncepts	•							
2.To prac	ctice t	he TQN	M princ	iples.											
3. To app	3. To apply the statistical process control														
4.To ana	4. To analyze the various TQM tools														
5.To ado	pt the	quality	v systen	ns.											
COURS	E OU'	TCOM	IES:												
After suc	cessfu	ıl comp	letion of	of the c	ourse, s	tudents v	will be	e able to)						
CO1: Un	dersta	and the	import	ance of	quality	and TQ	M at r	nanage	rial leve	el.		Uı	nderstand	1	
CO2: Pra	actice	the rele	evant qu	uality ir	nprove	ment too	ls to in	mpleme	ent TQN	М.		Aj	oply		
CO3: At	nalyse	e variou	is TQM	param	eters wi	ith help o	of stat	istical t	ools.			Aı	nalysing		
CO4: As	ssess v	various	TQM	Fechnic	lues.							Εv	valuate		
CO5:Pra	ctice t	the Qua	lity Ma	inagem	ent Sys	tems in a	a diffe	rent org	ganizati	on		Aj	oply		
		DINC	млти		DAM		FCON	/ES A1		OCDAN	AME SD			OMES	
	MAF	ring	wiin	rinde	FNAIVI I			ILS AI		UGRAN		LCILL		UNIES	
COs 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	-	-	-
CO2	М	-	-	-	L	L	-	L	М	М	-	L	-	-	М
CO3	S	S	М	S	S	-	-	L	-	L	-	L	L	М	L
CO4	L	Μ	S	L	М	-	L	-	L	М	L	М	-	-	-
CO5	L	L	Μ	-	L	М	S	S	Μ	L	L	Μ	-	-	Μ

S- Strong; M-Medium; L-Low

SYLLABUS:

INTRODUCTION

NITH.M Concept of Quality and Quality Management - Determinants of quality of product & service - Quality costs - Analysis Techniques for Quality Costs - TQM Principles and Barriers & Implementation -Leadership - Concepts- Role of Top Management- Quality Council – Quality statements: vision, mission, Policy - SMART Goal setting -- Strategic Planning. TOM PRINCIPLES AND PHILOSOPHIES V.M.K.V. Engg. College, Salem.

Customer satisfaction – Perception of Quality- Customer Complaints - Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment – Teams - Recognition and Reward- Performance Appraisal - Continuous Process Improvement : Deming's Philosophy - Juran's Trilogy - PDSA Cycle- Taguchi Quality Loss Function - 5S principles and 8D methodology - Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC) & PROCESS CAPABILITY

Statistical Fundamentals – Measures of central Tendency & Dispersion - Population and Sample- Normal Curve- Control Charts for variables and attributes - OC curve - Process capability- Concept of six sigma- The Seven tools of Quality - New seven Management tools.

TOOLS AND TECHNIQUES FOR QUALITY MANAGEMENT

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits-Total Productive Maintenance (TPM) – Concept- Improvement Needs- FMEA – Stages of FMEA - Business process reengineering (BPR) – principles, applications, reengineering process, benefits and limitations.

QUALITY SYSTEMS

Introduction to IS/ISO 9004:2000 – quality management systems – Elements- Implementation of Quality System - Documentation- Quality Auditing- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- 1. James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Heinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department/Name of the College	Mail ID
1.	A. Mani	Associate Professor	Management Studies / VMKVEC	mani@vmkvec.edu.in
2.	Dr. V. Sheela Mary	Associate Professor	Management Studies / AVIT	sheelamary@avit.ac.in

Witt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3412	1H83	UNIVERSAL HUMAN VALUES – UNDERSTANDING	Category	L	Т	Р	Credit						
0412	11100	HARMONY	FC-HS	3	0	0	3						
COUF	RSE OB	JECTIVES											
1.	Develop	oment of a holistic perspective based on self- exploration											
2.	Underst	anding (or developing clarity) of the harmony in the human being	g, family, soc	iety a	nd nat	ure/ez	xistence						
3.	Strengtl	nening of self-reflection.											
4.	Develop	oment of commitment and courage to act.											

UNIT I Introduction

Value Education, Definition, Concept and Need for Value Education-Content and Process of -basic guidelines for Value Education -Self exploration - Happiness and Prosperity as parts of Value Education.

UNIT II Understanding Harmony in the Human Being

Harmony in Myself-Understanding human being as a co-existence of the sentient 'I' and the material 'Body'-Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. -Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)-Understanding the characteristics and activities of 'I' and harmony in 'I'-Understanding the harmony of I with the Body- Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail

UNIT III Understanding Harmony in the Family and Society

Harmony in Human-Human Relationship -meaning of Justice - Trust and Respect -Difference between intention and competence- respect and differentiation; the other salient values in relationship 4.Understanding the harmony in the society - Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals –Gratitude

UNIT IV Understanding Harmony in the Nature and Existence

Whole existence as Coexistence -. Interconnectedness and mutual fulfilment among the four orders of nature-recyclability and self-regulation in nature-Holistic perception of harmony at all levels of existence.

UNIT V Holistic Understanding of Harmony on Professional Ethics

Natural acceptance of human values -.Definitiveness of Ethical Human Conduct - Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order- Competence in professional ethics

TEXT BOOKS:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCES:

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

2.Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi.

COURSE DESIGNERS

Sind Maine of the Faculty Designation College	Mail ID		
1. Dr.S.P.Sangeetha Vice Principal(Academics) AVIT san	sangeetha@avit.ac.in		
2. Dr.Jennifer G Joseph HoD-H&S AVIT PrJen	ennifer@avit.a.cin r Science & Engy		

V.M.K.V. Engg. College, Sales

24121001	ENCINEEDING MATHEMATICS	Category	L	Т	Р	Credit
34121B01	ENGINEERING MATHEMATICS	FC-BS	2	1	0	3

PREAMBLE

The driving force in Engineering Mathematics is the rapid growth of technology and the sciences. Matrices had been found to be of great utility in many branches of engineering applications such as theory of electric circuits, aerodynamics, and mechanics and so on. Many physical laws and relation can be expressed mathematically in the form of differential equations. Based on this we provide a course in matrices, calculus and differential equations. Vector calculus is a form of mathematics that is focused on the integration of vector fields. An Engineer should know the Transformations of the Integrals, as Transformation of Line Integral to surface and then to volume integrals.

PREREQUISITE

NIL	NIL														
COUR	RSE OF	BJECT	IVES												
1.	To re	call the	advanc	ed mat	rix kno	wledge	to Eng	gineerin	ig probl	lems.					
2.	To eq	uip the	mselve	s famili	iar with	the fur	nctions	of seve	eral var	iables.					
3.	To in	prove	their ab	ility in	solving	g geome	etrical a	pplicat	ions of	differen	tial calcu	ilus prot	olems		
4.	To ex	amine	knowle	dge in 1	multipl	e integr	als.								
5.	To in	prove	their ab	ility in	Vector	calculu	18.								
COUR)URSE OUTCOMES														
On th	On the successful completion of the course, students will be able to														
CO1.Apply the concept of orthogonal reduction to diagonalise the given matrix Apply															
CO2. Find the radius of curvature, circle of curvature and centre of curvature for a given curve. Apply															
CO3. (CO3. Classify the maxima and minima for a given function with several variables, through by finding Apply														
station	ary point	nts	1 .			1	4.1.1.1			1	1				
CO4. f	$\frac{1}{100}$	uble in	tegral o	ver gen	ieral are	eas and	triple 1	ntegral	over g	eneral vo	olumes			Apply	
CO5. /	Apply C	Jauss L	nvergei	nce theo	orem 10	or evalu	ating tr	ie suria	ice inte	grai.				Арріу	
MAPP	PING V	VITH I	PROGI	RAMM	E OU	ГСОМ	ES AN	D PR()GRA]	MME SI	PECIFI	C OUT	COMES		
COS	РО	РО	РО	PO	РО	РО	РО	PO	РО	PO1	PO1	PO1	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	0	1	2			
CO1	S	S	Μ	-	-	-	-	L	-	-	-	М	-	-	-
CO2	S	S	Μ	-	-	-	-	L	-	-	-	М	-	-	-
CO3	S	S	М	-	-	-	-	L	-	-	-	М	-	-	-
CO4	S	S	М	-	-	-	-	L	-	-	-	М	-	-	-
CO5	S	S	М	-	-	-	-	L	-	-	-	М	-	-	-
S- Stro	ng; M-	Mediur	n; L-Lo	ow											

Nitt.M

MATRICES:

Characteristic equation- Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof).

DIFFERENTIAL CALCULUS&PARTIAL DERIVATIVES:

Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature. Partial Derivatives – Total Differentiation – Maxima and Minima -Constrained Maxima and Minima by Lagrangian Multiplier Method,

ORDINARY DIFFERENTIAL EQUATIONS:

Solutions of second and third order linear ordinary differential equation with constant coefficients – Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

MULTIPLE INTEGRALS:

Introduction of multiple integration by examples of Double and Triple integral-Evaluation of double and Triple Integration (in both Cartesian and polar coordinates)-Change of order of integration.

VECTOR CALCULUS:

Scalar and vector point functions, Gradient, divergence, curl, Solenoidal and irrotational vectors, Vector identities (without proof),Normal and Directional derivatives, Solenoidal and irrotational field, Integration of vectors: Definition of Line, surface and volume integrals, Green's, Gauss divergence and Stoke's theorems (Statements only)

TEXT BOOKS:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2019).
- 2. Grewal B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2020).
- Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).

REFERENCES:

COUDSE DESIGNEDS

- 1. Engineering Mathematics", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- **2.** Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

	S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	1.	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics / AVIT	bhuvaneswari@avit.ac.in
	2.	Dr.G.Selvam	Associate Professor	Mathematics / VMKVEC	selvam@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34121B10 MATHEMATICS FOR COMPUTER Category L T									Т	Р	Credit				
011					ENGI	NEERI	ING			FC-E	BS	2	1	0	3
PREA Impart focus of Transfo probler PRER NIL	MBLE knowle of the orm an ns, it a EQUIS	edge a course d Z T lso pro SITE	bout the will be Fransfor ovides th	e subjec e the st m. Usi ne knov	t of a s tudy of ng the vledge	ingle v certain unders of Lapl	ariable n struc tanding ace Tra	and mu tures ca g of Int ansform	ltivari Illed P egral 1 s and i	able, inte Partial D transforr its applic	egral tra ifferentination a sation.	ansformat al equati and appli	ion with ons, Fou cations t	its applic rier serie to solve	eation. The es, Fourier real world
COUR	SE OF	BJEC	TIVES												
1.	1. Familiarize themselves with the functions of a variety of variables.														
2.	Know	v how	to deriv	e a Fou	rier ser	ies of a	ı given	periodic	e funct	ion by e	valuatin	g Fourier	coeffici	ents	
3.	3. Fourier transforms has the wide application in the field of heat diffusion, wave propagation and in signal and systems analysis.														
4.	To lea	arn ab	out Z- ti	ansforu	ns and	its appl	lication	IS							
5.	5. To familiarize themselves with the Laplace transform and how to use it														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. F	Form th	e part	ial diffe	rential	equation	ons and	d find	its solut	ions					Appl	y
CO2. 1	Find Fo	ourier	expansi	on of a	given f	unction	n							Appl	y
CO3. S	Solve F	ourier	integra	l proble	ems									Appl	y
CO4.	Analyz	ing di	screte si	gnals b	y using	, Z-tran	sform							Appl	y
CO5. A	Apply I	Laplac	e transf	orm tec	hnique	to solv	e a diff	erential	equati	ions				Appl	y
MAPP	ING V	VITH	PROG	RAMN	1E OU	TCON	IES Al	ND PRO	OGRA	MME S	PECIF	TC OUT	COMES	5	
COS	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	S	М	L	-	-	-	М	-	-	-	М	-	-	-
CO2	S	S	М	L	-	-	-	М	-	-	-	М	-	-	-
CO3	S	S	М	L	-	-	-	М	-	-	-	М	-	-	-
CO4	S	S	Μ	L	-	-	-	М	-	-	-	М	-	-	-
CO5	S	S	<u>M</u>	L	-	-	-	М	-	-	-	М	-	-	-
5- Stro	ong; M	-wiedi	ium; L-	LOW											

M. Hith

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q) = 0, Clairaut's form, f(z,p,q) = 0, f(p,x) = g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients

FOURIER SERIES:Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis

FOURIER TRANSFORMS: Fourier transform pairs - Fourier Sine and Cosine transforms – Properties - Transforms of simple functions - Convolution theorem - Parseval's identity

Z – **TRANSFORMS:**Z-Transform – Elementary Properties – Inverse Z-Transform – Convolution Theorem – Formation of Difference Equations – Solution of first and second order Difference Equations using Z-Transform

LAPLACE TRANSFORMS: Transform of elementary functions – basic properties – derivatives and integrals of transforms – transforms of derivatives and integrals –Transform of periodic functions-Inverse Laplace transform – Convolution theorem – Initial and Final value theorem-Solution of linear ODE of second order with constant coefficients and first order simultaneous equation with constant coefficients using Laplace transforms

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", 44th Edition, Khanna Publishers, Delhi (2017)
- 2. Kreyszig, E., "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2019).

REFERENCES:

- 1. Dr.A.Singaravelu, "Engineering Mathematics I & II", Meenakshi Agency, Chennai (2019)
- 2. Dr.A.Singaravelu, "Transforms and Partial differential Equations", Meenakshi Agency, Chennai (2019)
- 3. Veerarajan, T., "Engineering Mathematics I, II and III", Tata McGraw Hill Publishing Co., New Delhi (2012)
- 4. "Engineering Mathematics I & II ", by Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017)

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1.	Mrs.V.T.Lakshmi	Associate Professor	Mathematics/ VMKVEC	lakshmivt@vmkvec.edu.in
2.	Dr. A.K.Bhuvaneswari	Assistant Professor	Mathematics / AVIT	bhuvaneswari@avit.ac.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3412	1B04			PHYSI	CAL S	SCIEN	CES -			Catego	ry	L	Т	Р	Credit
0112			Part	A: EN	GINEE	RING	PHYS	ICS		FC-BS	;	2	0	0	2
PREA	MBLE								•						·
Engine engine applica design	ering F ering d tions of and to f	Physics omains Coptica Cabricat	is the Unde fibers variou	study erstandi in com 1s conc	of adv ng the imunica eptual b	vanced concep ation, probased de	physic ots of coductio evices.	es conce laser, to on and a	epts ar types o applicat	nd their of lasers tions of u	applicat , the pr ıltrasoni	ions in opagatic c's will	various on of lig help an e	technolo ht throu ngineer t	gical and gh fibers, o analyze,
PRERI	EQUIS	ITE :	NI	L											
COUR	SE OB	JECT	IVES												
1.	To rec	call the	propert	ties of la	aser and	l to exp	lain pri	inciples	of lase	r					
2.	To ass	sess the	applica	ations o	f laser										
3.	To detail the principles of fiber optics														
4.	To study the applications of fiber optics														
5.	5. To explain various techniques used in Non-destructive testing														
COUR	COURSE OUTCOMES														
On th	e succe	essful c	ompleti	on of th	ne cours	se, stud	ents wi	ll be abl	le to						
CO1	Unders	stand t	he prind	ciples la	aser, fib	er optic	es and u	ıltrasoni	ics				Underst	and	
CO2	Under	stand th	ne const	ruction	of lase	r, fiber	optic a	nd ultra	sonic e	quipmen	ts		Underst	and	
CO3	Demoi device	nstrate s	the wo	rking c	of laser.	, fiber	optic a	nd ultra	asonic	based co	omponen	ts and	Apply		
CO4	Interpr	et the p	otentia	l applic	ations of	of laser,	fiber o	ptics ar	nd ultra	sonics in	various	fields	Apply		
CO5	Differe	entiate	the wo	rking n	nodes c	of vario	us type	es of la	ser, fib	er optic	and ultr	asonic	Analyze	e	
МАРР	device	<u>s.</u> / ITH P	ROCR		FOUT	COME	IS ANT) PRO	TRAM	ME SPI	CIFIC		OMES		
															200
COS	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	М	-	-	-	-	-	-	-	-	М	М	-	М
CO2	S	-	L	-	-	-	-	-	-	-	-	М	М	-	-
CO3	S	-	-	М	-	-	М	-	-	-	-	М	М	-	-
CO4	S	М	-	М	М	S	М	-	-	-	-	М	S	-	М
CO5	S	М	М	-	-	-	-	-	-	-	-	М	М	-	-
S-Stro	Strong; M-Medium; L-Low														

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Unit: I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram.

Unit: II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

Unit: III

ULTRASONICS: Ultrasonic production: Magnetostriction and piezo electric methods – Determination of velocity of ultrasonic waves (acoustic grating) – Applications of ultrasonics

TEXT BOOKS

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. Palanisamy P. K., Engineering Physics, Scientific Publishers, 2011.

3. Avadhanulu M. N., Kshirsagar P. G., Arun Murthy T. V. S., A Textbook of Engineering Physics, S. Chand Publishing, 2018.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Edition, McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2012.

4. Srivastava S. K., Laser Systems and Applications 3rd Edition, New Age International (P) Ltd Publishers, 2019.

5. Ajoy Ghatak, Thyagarajan K., Introduction To Fiber Optics, Cambridge India, 2013.

COUR	COURSE DESIGNERS													
S.No.	Name of the Faculty	Designation	Department/ Name of the College	Mail ID										
1.	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS / VMKVEC	senthilkumarc@vmkvec.edu.in										
2.	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS / AVIT	sethupathi@vmkvec.edu.in										

34121	B04	PAR	P] T.R .	HYSIC	AL SC	IENCE	ES IEMIS'	ΓRV	Cate	gory	L	Т	Р	Cre	edit
01121	201	1 / 11	(C	ommor	to all	Branch	les)		FC	-BS	2	0	0	2	2
PREAM	IBLE														
The obj	ective of	of this c	course i	s to be	tter und	lerstand	the ba	sic con	cepts of	f chemi	stry an	d its ap	plicatio	ons in d	iverse
engineer	ring do	omains.	It als	so impa	arts kn	owledg	ge on	the pro	operties	of w	ater a	nd its	treatm	ent me	thods,
Electroc	hemistr	y, corr	osion a	nd batte	eries, pi	opertie	s of fue	el and c	combust	ion. Th	nis cour	se also	provid	es an ic	lea to
select th	e mater	ial for v	various	enginee	ring ap	plicatio	ns and t	heir cha	aracteriz	zation.					
PRERE	QUISI	ТЕ													
NIL															
COURS	RSE OBJECTIVES														
1.	To Provide the knowledge on water treatment.														
2.	To explain about the importance of electrochemistry, mechanism of different corrosion and principle and														
	working of batteries.														
3.	3. To explain different types of fuel, properties and its important features.														
COURS	SE OUT	ГСОМ	ES		_	_									
On the s	uccessf	ul com	oletion	of the co	ourse, s	tudents	will be	able to	underst	and					
CO1.	Estim	ate the	hardnes	ss of wa	ter App	ly and	Identify	v suitabl	le water	treatm	ent met	hods.	Apply		
CO2.	Descri	be tern	ns invo	lved in	electro	chemist	try, the	control	l metho	ds of c	orrosio	n and	Analy	se	
	workii	ng of en	ergy st	orage de	evices.								5		
CO3	Under	stand th	e quali	ty of fue	els from	its pro	nerties	and the	import	ant feat	ures of	fuels	Analy	se	
000	Chider	stand ti	ie quain	<i>cy</i> 01 14		no pro	perties	und the	mport	int rout		lucib	7 mary	50	
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES	AND I	PROGE	RAMM	E SPE	CIFIC	OUTC	OME		
G G G	DOA		D 00	D O 4		DO		DOG	DOG	PO1	PO1	PO1	PSO	PSO	PSO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
001	a			Ŧ			a								М
COI	S	М	М	L	-	М	S	М	-	-	-	Μ	Μ	М	
CO2	S	S	L	L	-	S	S	S	-	-	-	S	М	L	М
CO3	S	Μ	Μ	L	L	L	Μ	Μ	-	-	-	S	-	Μ	Μ
S- Stror	ng; M-N	Aediun	ı; L-Lo	W											

Syllabus

UNIT – I: WATER TECHNOLOGY

Hardness of water – types – expression of hardness – units – estimation of hardness of water by EDTA. Boiler troubles - Treatment of boiler feed water – Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning). External treatment – Ion exchange process, zeolite process – Domestic water treatment - desalination of brackish water – Reverse Osmosis and Electrodialysis.

UNIT - II: ELECTROCHEMISTRY, CORROSION AND BATTERIES

Electrochemistry: Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - Galvanic cell-Electrochemical cell representation - EMF series and its significance. Corrosion – Definition causes and effects, Classification, Types of corrosion- dry corrosion, Wet corrosion, Factors influencing rate of corrosion, Corrosion control methods – Sacrificial anode method and impressed current cathodic method.

Batteries: Terminology- Daniel cell – Dry cell - Lead-acid accumulator- Nickel-Cadmium batteries, Lithium batteries: Li/SOCl2 cell - Li/I2 cell- Lithium ion batteries. Fuel cells: Hydrogen-oxygen fuel cell, Solid oxide fuel cell (SOFC)

UNIT – III FUELS AND COMBUSTION

Fuels: Introduction – classification of fuels – coal – analysis of coal (proximate and ultimate). Carbonization – manufacture of metallurgical coke (Otto Hoffmann method) – petroleum – manufacture of synthetic petrol (Bergius process). Knocking – octane number – cetane number – natural gas – compressed natural gas (CNG). Liquefied petroleum gases (LPG) – power alcohol and biodiesel. Combustion of fuels: Introduction – calorific value – higher and lower calorific values- theoretical calculation of calorific value – ignition temperature – spontaneous ignition temperature – explosive range – flue gas analysis (ORSAT Method).

TEXTBOOK

- 1. Engineering Chemistry by Jain and Jain, 16th Edition, Dhanpat Rai Publishing Company, New Delhi, 2017
- 2. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.

REFERENCES

- 1. Chemistry: Principles and Applications, by M. J. Sienko and R. A. Plane, 3rd Edition, McGraw Hill, 1980
- 2. Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S. Krishnan
- 3. Physical Chemistry, by P. W. Atkins, Julio de Paula, 8th Edition, Oxford University press, 2007
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

Course Designers:

S.No	Name of the Faculty	Department/Name of the College	Mail ID
1.	Dr. A.R. Sasieekumar	Chemistry / VMKVEC	sasieekhumar@vmkvec.edu.in
2.	Dr. R. Nagalakshmi	Chemistry / AVIT	nagalakshmi.chemistry@avit.ac.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

244	24 0 1 4	NUMERICAL METHODS AND NUMBER Category L T											Т	Р	Credit
341	21014					лю <i>р</i> Т	THEO	RY	DEN	FC-BS	3	2	1	0	3
PREA This co subseq proper securit import	MBLE ourse air uent co ties of t y, mem ant area	ms at omputa the in ory r s of m	develop ational tegers, j nanager nathemat	ing th treatn prime nent, tics us	e abilin nent an s or of auther sed in c	ty to for nd to c ther num tication	rmulat hoose nber-t a and er scier	e an en an ap heoreti coding nce, and	gineeri propria c objec theory l the ba	ng proble ate numer ets and it y. Numbe usis behind	m in a fical a has v er the l almo	a mathemat approach. various app ory is pro ost all of mo	tical form Number Dication Dably co odern cr	m appro theory s in the one of yptogra	priate for encodes field of the most phy.
PRER NIL	EQUIS	ITE													
COUR	RSE OB	JECT	TIVES												
1. To familiar with numerical solution of equations															
2. To be get exposed to finite differences and interpolation															
3.	3. To be thorough with the numerical Differentiation and integration														
4. To give an integrated approach to Number Theory and to have the knowledge of division algorithm and fundamental theorem of arithmetic															
5. To familiar with congruencies and classical theorems															
COURSE OUTCOMES															
On the	success	ful co	ompletio	n of t	ne coui	se, stud	lents v	vill be a	ble to						
CO1.	Solve f Comp	the sy	stem of	linea	r algeb	raic equ	ations	s and si	ngle no	on linear e	quatio	ons arising	in the	Apply	
CO2.	Apply	vario	us nume	erical	method	ls to fin	d inter	mediat	e nume	rical valu	e &Pc	lynomial	of	Apply	
numer	ical data	l.	<u></u>		C	1	• •	1 1	1	1 6	• .	1 1	•	Аррту	
numer	Find t	he dii hods	ITerentia	tion	orap	olynom	nal ar	nd eval	uate ti	ne definit	e inte	egrals by	using	Apply	
CO4 .	Define	e and	interpre	et the	conce	pts of	divisił	oility, c	congrue	ence, grea	test c	ommon di	ivisor,	Apply	
CO5.	and prii	me-rac	em of li	on near c	ongrije	encies au	nd der	ive som	ne class	ical theore	ems			Annly	
MAPI	PING W	ITH	PROGI	RAM	ME O	UTCON	MES A	AND PI	ROGR	AMME S	SPEC	FIC OUT	COME	S	
COS	PO1	PO 2	PO 3	PO 4	PO 5	PO6	PO 7	PO 8	PO 9	PO10	PO1	1 PO1 2	PSO 1	PSO 2	PSO3
CO1	S	Μ	М	L	-	-	-	L	-	-	-	М	-	-	-
CO2	S	Μ	Μ	L	-	-	-	L	-	-	-	М	-	-	-
CO3	S	Μ	Μ	L	-	-	-	L	-	-	-	М	-	-	-
CO4	S	Μ	L	-	-	-	-	L	-	-	-	М	-	-	-
CO5	S	M	L	-	-	-	-	L	-	-	-	М	-	-	-
S-Str	ong; M-	Medi	um; L-l	Low											

SOLUTION OF LINEAR EQUATIONS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gauss Elimination, Gauss-Jordan, Jacobi and Gauss-Seidel methods, Jacobi And Gauss-Elimination, Gauss-Jordan, Jacobi and Gauss- Seidel methods. Inverse of a matrix by Gauss-Iordan method - Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION:

Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL INTEGRATION AND DIFFERENTIATION:

Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both1/3rd and 3/8th) rules. Numerical differentiation: Euler's method, Modified Euler's method, Taylor's series

DIVISIBILITY THEORY AND CANONICAL DECOMPOSTIONS:

Division algorithm - Base-b Representations - Number Patterns - Prime and Composite Numbers – GCD - Euclidean Algorithm - Fundamental Theorem of Arithmetic - LCM.

CONGRUENCES AND CLASSICAL THEOREMS:

Congruence's - Linear Congruence's, Chinese Remainder Theorem, Wilson's Theorem - Fermat's Little Theorem - Euler's Theorem - Multiplicative Functions - Eulers Phi functions – Tau and Sigma functions

TEXT BOOKS:

- 1. B.S. Grewal, "Numerical Methods in Engineering and Science", 6th Edition, Khanna Publishers, New Delhi (2014).
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier publications (2007).
- 3. David.M.Burton."Elementary Number theory", Tata McGraw Hill (2012).

REFERENCES:

- 1. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2008).
- 2. Niven.I, Zuckerman.H.S and Montgomery.H.L, "An Introduction to Theory of Numbers", John Wiley and sons (2004).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	Dr. A.K.Bhuvaneswari	Assistant Professor Grade-II	Mathematics / AVIT	bhuvaneswari@avit.ac.in
2	Dr.G.Selvam	Associate Professor	Mathematics / VMKVEC	selvam@vmkvec.edu.in

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34121B17		P	PROBABILITY AND QUEUING THEORY						Cate	egory	L	Т	Р	Credit	
5412	01121817								FC	-BS	2	1	0	3	
PREAMBLE Probabilistic and statistical analysis is mostly used in varied applications in Engineering and Science. Statistical method introduces students to cognitive learning in statistics and develops skills on analyzing the data by using different tests and designing the experiments with several factors. Queuing theory is the mathematical study of waiting lines and it's a primary tool for studying the problem of congestion.															
COURSE OBJECTIVES															
1.	I. To get the knowledge on concepts of random variables and distributions with respect to how they are applied to statistical data.														
2.	• To acquire skills in handling situations involving more than one random variable and functions of random variables.														
3.	To be	get ex	posed t	to the co	oncepts	s of ran	dom pr	ocesses	s and di	screte ti	me Mark	ov chain			
4.	4. To acquire knowledge of Testing of Hypothesis is useful in making decision and test them by means of the measurements made on the sample.										ans of the				
5.	To stu	ıdy que	euing n	nodels f	for anal	yzing t	the real	world	systems	s.					
COUR	RSE OU	JTCO	MES												
On the successful completion of the course, students will be able to															
CO1. Select an appropriate probability distribution to determine the probability function for solving engineering problem.															
CO2.D functio	CO2. Derive the marginal and conditional distributions of bivariate random variables, and use generating functions to establish the distribution of linear combinations of independent random variables. Apply														
CO3.C	CO3. Classify and apply the concepts of Random Process, Markov Process and their application to answer quantitative questions about the outcomes of probabilistic systems Apply											У			
CO4 .A	Apply th	ne conc	epts of	large/s	mall sa	imple t	ests into	o real l	ife prob	olems.				Appl	у
CO5. Derive and apply main formulas for some properties (such as stationary probabilities, average Apply waiting and system time, expected number of customers in the queue, etc.) M/M/1, M/M/C – finite and infinite capacity queuing systems.															
MAPP	ING V	VITH	PROG	RAMN	IE OU	TCON	IES A	ND PR	OGRA	MME S	SPECIFI	C OUT	COMES		
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	М	L	-	L	-	-	L	-	-	-	М	-	-	-
CO2	S	М	L	-	L	-	-	L	-	-	-	М	-	-	-
CO3	S	M	L	-	L	-	-	L	-	-	-	M	-	-	-
CO4	S	S	M	M	L	-	-	L	-	-	-	M	-	-	-
CO3 S M M L - L - - M -															
5- Str	S, M.M.														
												N	2		

Dr. M. NITHYA, Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

PROBABILITY AND RANDOM VARIABLES:

Probability concepts - Random variables - Discrete and continuous random variables - Expectation - Variance - Moment Generating function, Standard Distributions: Binomial, Poisson, Normal, Uniform and Exponential

TWO-DIMENSIONAL RANDOM VARIABLES:

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Regression Analysis, Transformation of random variables, Central limit theorem.

RANDOM PROCESSES:

Classification, Stationary process, Markov process, Poisson process, Birth and death process, Renewal process, Markov chain, Transition probabilities, Limiting distributions.

TESTING OF HYPOTHESIS:

Sampling distributions – Statistical hypothesis – Testing of hypothesis for mean, variance, and proportions for large and Small Samples (Z, t and F test) - Chi-square Tests for Goodness of fit - independence of attributes.

QUEUEING THEORY:

Markovian queueing models, Little's formula, M/M/1, M/M/C – finite and infinite capacity - M/G/1 Queues, Pollaczek - Khintchine formula (Statement only)

TEXT BOOKS:

- 1. S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", 11th extensively revised edition, S. Chand & Sons (2015).
- **2.** T. Veerarajan, "Probability, Statistics and Random processes" (Third Edition), Tata McGraw-Hill publishing Company Ltd., New Delhi (2017).
- **3.** F.S Hillier and G.J. Lieberman, "Introduction to Operations Research: Concept and Cases", McGraw-Hill International (2012).

REFERENCES:

- 1. I.R. Miller, J.E. Freund and R. Johnson, "Probability and Statistics for Engineers", 8th Edition, (2015)
- 2. Dr.A.Singaravelu, "Probability and Queuing Theory", Meenakshi Agency, Chennai (2012).
- 3. Premkumar Gupta, D.S. Hira, "Operations Research", S.Chand & company New Delhi (2014).

S. No	Name of the Faculty	Designation	Department/Name of the College	Mail ID		
1.	Dr. P. Sasikala	Professor	Mathematics / VMKVEC	sasikala@vmkvec.edu.in		
2.	Mr. D. Balaji	Asst. Professor	Mathematics / AVIT	balaji@avit.ac.in		

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34121B05			SMART MATERIALS AND NANO							Category		L	Т	Р	С	
		TECHNOLOGY FC-BS									3	0	0	3		
Preamble: This syllabus enables the students to learn the applications of smart materials and uses of various sma											nar					
enginee	gineering devices. The syllabus also discusses about the Nanomaterials, their unique properties and applications in															
various	fields.															
Prereq	uisite: P	hysical	l scienc	es												
Course	Objecti	ves:														
1.	Gain the knowledge about the concepts of smart systems and various smart materials.															
2.	Realiz	Realize about the smart sensor materials which are used for Industrial Applications.														
3.	Under	Understand about the Industrial application oriented Smart materials' Actuators.														
4.	To learn the properties and classifications and importance of Nanomaterials															
5.	Understand the characteristic features of materials at nanoscale and their potential applications															
COS	Course Outcomes: On the successful completion of the course, students will															
CO1	Learn the smart-properties of various functional materials Learn															
CO2	understand the applications of different smart materials as sensors Understand															
CO3	understand the applications of different smart materials as actuators Understand															
CO4	Gather knowledge on unique properties of nanomaterials Learn															
CO5	Use of Nanomaterials for industrial applications							Ac	Acquire							
CO6	6 Gain knowledge about nanomaterials in health care industry							^								
Mappi	ng with	Progra	mme C)utcom	es and	Progra	mme S	pecific	Outco	mes						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	P 3	SO
CO1	S	-	-	-	-	-	-	-	-	-	-	_	-	-	+	_
CO2	S	S	S	S	М	_	_	_	_	_	-	S	_	-		
CO3	S	M	S	S	-	_	_	_	_	_	_	S	_	-		-
CO4	S	S	S	S	М	-	-	-	-	-	_	S	-	-	1	-
CO5	S S	S	S	S	-	-	-	-	-	-	-	S	-	-	1	-
CO6	S	M	M	S	М	-	-	-	-	-	-	S	-	-		-
S – stro	S – strong, M- Medium, L – Low															

M. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Syllabus

Overview of Smart Materials: Introduction to Smart materials –piezoelectric materials – piezoelectricity – magnetostriction materials – magnetostriction effect– shape memory alloys (SMA) – photoelastic materials – photoelasticity.

Smart material based sensors: Introduction to sensing technology - electric and magnetosrictive sensors - SMA based sensors - Infrared sensors – stress analysis by photoelastic sensors- Industrial Applications of smart sensors: Accelerometer and Biological DNA sensors.

Smart Materials For Actuators: Introduction to smart actuators - piezoelectric actuators - magnetostrictive actuators - SMA based actuators - polymeric and carbon nanotubes based low power actuators –Industrial Applications: robotic artificial muscles , materials for bone substitutes and tissue replacement implants - smart polymeric materials for skin engineering

Materials in Nanoscale: Historical development of nanomaterials - Unit and dimensions - Classifications of nanomaterials - quantum dots, nanowires, ultra-thin films, nanoparticles, multilayered materials. Length Scales involved and effect on properties: mechanical, electronic, optical, magnetic and thermal properties.

Selected Applications of Nanomaterials: Medical diagnostics – nanomedicine – targeted drug delivery – Biosensors; Information storage – nanocomputer – molecular switch – single electron transistors; design and fabrication of MEMS and NEMS devices.

TEXT BOOKS

- 1. Palanisamy P.K. Materials Science. SCITECH Publishers, 2015.
- 2. Fundamental of Smart Materials, Editor: Mohsen Shahinpoor, RSC Publishers 2020
- 3. Charles P. Poole, Jr. and Frank J Ownes, "Introduction to Nanoscience and Nanotechnology", Wiley-Interscience Inc., Publication, 1st Edition, 2020.
- 4. Smart Material Systems And Mems Design And Development Methodologies by Vijay K Varadan, WILEY INDIA 2014.

REFERENCE BOOKS

- 1. Pillai S.O., Solid State Physics, 9th Edition, New Age International (P) Ltd., Publishers, 2020.
- 2. William D. Callister Jr., David G. Rethwisch., Materials Science and Engineering: An Introduction, 10th Edition, Wiley Publisher, 2018.
- 3. Nanotechnology, Second eition, M. A. Shah and K. A. Shah, Wiley Publishers 2019.
- 4. Fundamentals of Nanotechnology, Hornyak, G. Louis, Tibbals, H. F., Dutta, Joydeep, CRC Press, 2009.

COUF	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	Dr. B. DHANALAKSHMI	Asso. Professor	Physics / AVIT	dhanalakshmi.phy@avit.ac.in
2	Dr G. SURESH	Asso. Professor	Physics/ AVIT	suresh.physics@avit.ac.in
3	Dr. R. N. VISWANATH	Professor	Physics / AVIT	rnviswanath@avit.ac.in

W. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.
341	121B21 DISCRETE MATHEMATICS Category L T P Credit MBLE FC-BS 2 1 0 3														
										FC-E	BS	2	1	0	3
PREAM Discrete science relation efficien	ABLE e mathe . It wor ships b tly sche	ematics ks with etween edule la	is very discret these orge pro	useful e struct objects. jects, pl	in cons tures, w It is us an optin	tructing hich ar sed to c mal rou	g compo e the ab lesign e tes, and	uter pro ostract r efficient l solve 1	ograms a nathema t netwo many ot	and in m atical stru rks, optim her prob	astering uctures t mally as lems, bo	many th used to re- usign free th applie	eoretical epresent of quencies d and abs	topics of liscrete o to cellula stract.	computer bjects and ar phones,
PRERI	EQUIS	ITE - N	NIL		1					1					
COUR	SE OB	JECTI	VES												
1.	To ext	end stu	dent's	logical	and mat	hemati	cal mat	urity an	d abilit	y to deal	with abs	traction			
2.	Studer	nts will	be able	to For	mulate s	stateme	nts fror	n comn	10n lang	guage to :	formal l	ogic, app	ly truth t	ables and	the rules
	of pro	positio	nal and	predica	te calcu	lus									
3.	To un	derstan	d the ba	sic con	cepts of	combi	natory								
4.	To familiarize the applications of algebraic structures														
5.	To understand the concepts and significance of lattices and Boolean algebra which are widely used in computer														
COUD	science and engineering														
	SE OU	ICON		- f (1		- 4 1 4		1.1. 4	_						
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0		1	(1			
COI. F	kepnras	tology	or a cor	tradict	its as it	igical p	roposu	ions an	a demo	onstrate v	whether	the prop	OSILION 18	Apply	/
CO2 I	nfer wł	ether a	$\frac{01}{100}$	l aroun	nent is	valid fr	om the	oiven :	set of n	remises	hy annly	ving the	inference		
rules of	predica	ate calc	ulus.	i uiguii	ient 15	vana n		Siven	set of p	rennises	oy uppi.	ing the	initer enter	Apply	/
CO3. C	onstruc	t the re	currenc	e relati	on for a	given e	enginee	ring pro	oblem a	nd solve	the recu	rrence ec	uation	Apply	1
CO4. B	e expos	sed to c	oncepts	and pr	operties	s of algo	ebraic s	tructure	es such	as groups	s, rings a	ind	•	A	_
fields.	•		•	•	•	Ū.				0				Apply	/
CO5. T	o be fa	miliar v	with the	notion	s of ord	ered alg	gebraic	structu	res, incl	uding lat	tices and	d Boolea	n	Apply	7
	ADDING WITH DDOCDAMME OUTCOMES AND DDOCDAMME SDECIELC OUTCOMES														
COS															
COS	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	P09	POI0	POII	POI2	PSOI	PSO2	PS03
	S	S	M	L	-	-	-	M	-	-	-	M	-	-	-
CO2	S	S	M	L	-	-	-	M	-	-	-	M	-	-	-
CO3	S	S	M	L	-	-	-	M	-	-	-	M	-	-	-
CO4	S	S	S	L	-	-	-	Μ	-	-	-	M	-	-	-
CO5	S	S	Μ	Μ	L	-	-	Μ	-	-	-	Μ	-	-	-
S- Stro	- Strong; M-Medium; L-Low														

PROPOSITIONAL CALCULUS

Propositions – Logical connectives – Compound propositions – Conditional and biconditional propositions – Truth tables – Tautologies and contradictions – Contra positive – Logical equivalences and implications – DeMorgan's Laws - Normal forms – Principal conjunctive and disjunctive normal forms – Rules of inference – Arguments - Validity of arguments.

PREDICATE CALCULUS

Predicates – Statement function – Variables – Free and bound variables – Quantifiers – Universe of discourse – Logical equivalences and implications for quantified statements – Theory of inference – The rules of universal specification and generalization – Validity of arguments.

COMBINATORICS

Review of Permutation and combination-Mathematical Induction-Pigeon hole principle-Principle of inclusion and exclusion-Generating function-Recurrence relations.

GROUPS

Semi groups-Monoids-groups-permutation group –Cosets-Lagrange's theorem-Group homomorphism-Kernal- Rings and Fields (definitions and Examples only).

LATTICES

Partial ordering- Posets-Hasse diagram-Lattices-Properties of Lattices-Sub Lattices- Distributed Lattices -Special Lattices-Boolean Algebra-Homomorphism

TEXT BOOKS:

- 1. Tremblay J.P, and Manohar R., "Discrete Mathematical Structures with Applications to Computer Science", McGraw Hill Book Company (1975), International Edition (1987).
- 2. Rosen, K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition (2011).

REFERENCES:

- 1. Dr.A.Singaravelu, "Discrete Mathematics", Meenakshi Publishers, Chennai (2019).
- 2. K.Sankar, "Discrete Mathematic", 3rd edition, Indian Publishers, Chennai.(2016)

COURS	SE DESIGNERS			
S.No	Name of the Faculty	Designation	Department/Name of the College	Mail ID
1	Dr. S.Punitha	Associate Professor	Mathematics / VMKVEC	punithas@vmkvec.edu.in
2.	Dr. M.Thamizhsudar	Associate Professor	Mathematics / AVIT	thamizhsudar@avit.ac.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3412	1B36		S	STATIS	STICA	L FOU	NDAT	ION		Cat	egory	L	Т	Р	Credit
0112			(Statis	stical ta	ble peri	mitted f	or Exai	ninatio	n)	F	C-BS	2	1	0	3
PREA	MBLE												•		
Statistic	cal met	hods ar	e impoi	tant to	ols whi	ch prov	ide the	engine	ers with	n both de	scriptive	and ana	lytical m	ethods for	or dealing
the data	a by usi	ng diffe	erent tes	ts and i	nethods	S.	student	s to cog	ginuve	learning	in statist	ics and d	levelops s	SKIIIS OII	anaryzing
PRER	EQUIS	ITE : N	NIL												
COUR	SE OB	JECTI	VES												
1.	To de for dif	scribes ferent l	the cha evels o	racteris f measu	tic of th rement	ne entire	e group	of data	and ch	oose the	best cent	tral tende	ency and	variabilit	ty statistic
2.	To Ur	nderstar	nd the ro	ole of S	ampling	g and st	eps in d	levelopi	ing a sa	mpling p	lan				
3.	To acconce	quire kı pts.	nowledg	ge abou	t impoi	tant inf	erentia	l aspect	s such a	as point	estimatio	n, test of	f hypothe	ses and a	associated
4.	Study	ing mul	tiple pa	rtial co	rrelatio	ns and f	fitting n	nultiple	linear r	egressio	n to triva	riate data	a.		
5.	5. Understand the theory of random number generators and the methods used in random variate generation														
COUR	XOURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1. ungrou	Analyz ped data	ze statis a cases.	stical da	ita using	g measu	res of c	central	tendenc	y, dispe	ersion an	d location	n for gro	uped and	Apply	1
CO2.	Identif	y and r	ecogniz	e the ap	opropria	ate sam	ple surv	yey desi	gn in re	al life rel	lated pro	blems.		Apply	/
CO3.	Estima	te the c	haracte	eristic of	t the po	pulation	n with c	legree o	of config	dence fro	m the rai	ndom sar	nple.	Apply	1
CO4. A method	Apply th in fitti	ne conce ng linea	ept of In	inear co	orrelation or regression of the second se	on and r	egressi irves	ons to e	engineei	ing prob	olems. Ap	oply least	t square	Apply	/
CO5.	Genera	ate rand	lom nur	nbers a	nd rand	om vari	iates us	ing diff	erent te	chniques	•			Apply	1
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPE	CIFIC O	UTCON	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	Μ	L				L				Μ			
CO2	S	S	Μ	L	-			L		-		Μ	-		
CO3	S	S	Μ	L				L				Μ			
CO4	S	S	Μ	Μ				Μ				Μ			
CO5	S	S	Μ	Μ				Μ				Μ			
S- Stro	ng; M-	Mediu	m; L-L	ow											

M. Hith

EMPIRICAL STATISTICS

Introduction to Statistics – Frequency distribution – Measures of Central tendency, dispersion, Skewness and Kurtosis. **SAMPLING THEORY**

Fundamentals of sampling – Methods of Sampling – Random Sampling - Simple random Sampling – Restricted Random sampling - Non-Random Sampling – Judgment or Purposive Sampling – Quato sampling – Convenience Sampling – Mixed sampling

ESTIMATION THEORY

Sampling distributions – Estimation of parameters (consistent and unbiased) – Point and interval estimates for population proportions, mean and variance - Maximum likelihood estimate method - Method of moments

LINEAR STATISTICAL MODELS

Simple linear correlation and regression – Multiple and partial correlation and regression – Curve fitting by method of least squares – fitting of straight lines – polynomials – exponential curves.

RANDOM NUMBER GENERATION

Generation of random numbers, Techniques, tests for random numbers, Chi-square test, Runs test, Poker test, Kolmogrov Simrnov test, Random Variate generation – Inverse transform method, Exponential Random Variates, uniform random Variates, Poisson Random Variates, Binomial Random Variates, Normal Random Variates.

TEXT BOOKS:

- 1. S.P. Gupta, "Statistical Methods", Sultan Chand & Sons, New Delhi, 45th Revised Edition (2017).
- 2. Douglas C. Montgomery and George C.Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley (2013).
- 3. Jerry Banks, John S. Carson, Barry L. Nelson, David M.Nicol, "Discrete Event System Simulation", Prentice Hall of India, Delhi (2002).

REFERENCES:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi (2015).
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition (2007).
- 3. Geoffrey Gordon, "System Simulation", Prentice Hall of India, Delhi (2002).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Department/Name of the College	Mail ID
1	Dr.P.Sasikala	Professor	Mathematics / VMKVEC	sasikala@vmkvec.edu.in
2	Dr.L.Tamilselvi	Professor	Mathematics / AVIT	ltamilselvi@avit.ac.in
2	Dr.L. I amilselvi	Professor	Mathematics / AVII	Itamiiseivi@avit.ac.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

0.440				PHYS	ICAL S	SCIEN	CES L	AB		Cat	tegory	L	Т	Р	Credit
3412	(1B81		PARI	A – KI	LAL A PH	ND VII YSICS	KIUAI	L LAB	IN	F	C-BS	0	0	2	1
PREAD In this viscosit determent above r	MBLE laborate ty of w ination real lab	ory, ex ater, w of the experin	perimer vaveleng dimens ments, s	nts are gth of s ion of students	based of spectral objects s gain h	on the c lines, like th ands-or	alculat thermal e size	ion of p l condu of a mi	ohysica activity icro par a virtual	l parame and ban ticle and laborate	ters like y d gap. So l thicknes ory.	young's ome of t s of a t	modulus, he experi hin wire.	rigidity ments inv In additie	modulus, volve the on to the
PRER	EQUIS	ITE: N	NIL												
COUR	SE OB	JECT	IVES												
1	To im	part ba	sic skil	ls in tak	ting rea	ding wi	ith prec	ision of	f physic	s experi	nents				
2	To inc	culcate	the hab	it of ha	ndling	equipm	ents ap	propria	tely						
3	To ga	in the l	knowled	lge of p	racticir	ng expe	riments	throug	h virtu	al laborat	ory.				
4	To kn	ow the	import	ance of	units										
5	To ob	tain res	sults wi	th accur	racy										
COUR	SE OU	TCON	MES												
On th	ne succe	essful c	completi	on of t	he cour	se, stud	ents wi	ll be ab	ole to						
CO1.	. Recog physic	nize th al para	e impo meters	rtance (and obt	of units aining	while results	perforn	ning the	e exper	iments, o	calculatin	g the	Understa	nd	
CO2	. Operat	te the e	quipme	nts wit	h precis	sion							Apply		
CO3	. Practic	e to ha	andle the	e equip	ments i	n a syst	ematic	manne	r				Apply		
CO4	Demo	nstrate	the exp	erimen	ts throu	oh virti	ial labo	ratory					Apply		
CO5	Coloul	ata tha	magnit r	with one		.511 1110	<i>u</i> 1000	futory					Analvze		
марр	ING W					COM	TS ANI) PRO	GRAM	ME SPI	CIFIC (MES		
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	S	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	S	Μ	Μ	S	-	-	-	Μ	-	-	Μ	Μ	-	Μ
CO3	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	S	S	Μ	Μ	S	-	-	-	-	-	-	S	Μ	-	Μ
CO5	S	S	-	-	-	-	-	-	-	-	-	-	-	-	-
S- Stro	ng; M-I	Mediur	n; L-Lo	W											
SYLL 1. 2. 3.	ABUS Young Rigidi Viscos	g's mod ty mod	lulus of lulus of a liquid	a bar - a wire - Poise	Non-ur - Torsic uille's 1	niform bonal Per method	oending ndulum	5							

4. Velocity of ultrasonic waves in liquids - Ultrasonic Interferometer

3 NT

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

- 5. Particle size determination using Laser
- 6. Wavelength of spectral lines grating Spectrometer
- 7. Thickness of a wire Air wedge Method
- 8. Thermal conductivity of a bad conductor Lee's disc
- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department/ Name	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	Of the College PHYSICS / VMKVEC	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS / VMKVEC	sethupathi@vmkvec.edu.in

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

				PHY	SICA	L SCI	ENCES	S LAB			Categ	gor	L	Т	Р	Credit	
34121	IB81		PART	B - EN	IGINE	ERINO	G CHE	MIST	RY LA	В	y						
				(C	ommo	n to Al	l Bran	ches)			FC-E	3S	0	0	2	1	
Engine student basic a and its PRER	ering (ts to un pplicat disadv EQUIS	Chemis derstan ion ori antage SITE:	try Lab nd the a ented k s. Now NIL	experapplica applica anowle -a-days	iments tions of dge abo the pr	explain f Engin out elec actical	the b eering ctroche and han	asics an Chemis mistry. ndling o	nd esse stry. Tl Water of equip	ntials of ne electri techno oments a	f Engine rodes, C logy stu are need	ering ell an dy gi ed for	che d bat ves ti r our	mistry. tteries he idea fast gro	It als study abou owing	so helps the gives clean at hardness glife style.	ie ir s
COUR	SE OI	BJECT	TIVES														
1.	To in	part b	asic ski	lls in C	hemist	ry so th	at the s	student	will un	derstan	d the en	ginee	ring	concep	t.		
2.	To inculcate the knowledge of water and electrochemistry.																
3.	To la	To lay foundation for practical applications of chemistry in engineering aspects.															
C.OUI	RSE O	OUTCOMES															
On the	succes	essful completion of the course, students will be able to															
CO1. U	Jnderst	lerstand the basic skills for his/her future studies. Understand															
CO2 A	naiyze	nalyze the water comprehensively. Apply															
CO3. F	арріу ц	ne prac		iowied	ge in ei	ngineer	ing asp	ects				Appi	ly				
MAPP	ING V	VITH	PROG	RAMN	AE OU	TCON	AES A	ND PR	OGRA	MME	SPECI	FIC (DUT	COME	ES		
COS	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PS	D2 PSO	13
CO1	S	Μ	М	-	L	М	М	S	-	-	-	N	M	-	-	· _	
CO2	S	Μ	М	-	L	М	М	L	-	-	-	N	М	-	-	- –	
CO3	S	S	Μ	-	L	Μ	Μ	Μ	-	-	-	I	Μ				
S- Stro	ng; M-	Mediu	m; L-L	ow													
 Dete Estin Acic Estin Dete Estin Estin Estin TEXT Engi 	 Determination of Hardness by EDTA method Estimation of Hydrochloric acid by conductometric method Acid Base titration by pH method Estimation of Ferrous ion by Potentiometric method Determination of Dissolved oxygen by Winkler's method Estimation of Sodium by Flame photometer Estimation of Copper from Copper Ore Solution Estimation of Iron by Spectrophotometer TEXT BOOK: Engineering Chemistry Lab Manual by VMU. 																
COUR	RSE DE	ESIGN	ERS			F				1 -							
S.No	Name	e of the	Facult	У		Depa	artmer the Co	nt/Nam Illege	e		Mail ID						
1.	Dr.R.	Nagala	akshmi			Che	mistry	AVIT			nagalaks	shmi.c	chem	istry@	avit.a	c.in	\neg
2.	A. Gi	. Gilbert Sunderraj Chemistry / VMKVEC gilbertsunderraj@vmkvec.edu.in											raj@v	vmkve			

titt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

24121010	ENVIRONMENTAL SCIENCES	Category	L	Т	Р	Credit				
34121019	(Common to All Branches)	FC-BS	3	0	0	3				
PREAMBLE										
Environmental science is an interdisciplinary field that integrates physical, chemical, biological, and										
ature and ania asia	stances have a second province mental studies deals with the human relations to the environment and espirately									

Environmental science is an interdisciplinary field that integrates physical, chemical, biological, and atmospheric sciences. Environmental studies deals with the human relations to the environment and societal problems and conserving the environment for the future. Environmental engineering focuses on the various issues of environment and its management for sustainable development by improving the environmental quality in every aspect.

PREREQUISITE: NIL

COURSE OBJECTIVES

- 1. To inculcate the knowledge of significance of environmental studies and conservation of the natural resources
- 2. To acquire knowledge of ecosystem, biodiversity, it's threats and the need for conservation
- 3. To gain knowledge about environmental pollution, it's sources, effects and control measures
- 4. To familiarize the legal provisions and the national and international concern for the protection of environment
- **5.** To be aware of the population on human health and environment, role of technology in monitoring human health and environment.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1. Understand the importance of environment and alternate energy resources												Under	rstand			
CO2. conser	Initiate vation	e the av	warene	ss and	recogi	nize the	e socia	l respo	onsibili	ty in eco	osystem	and bio	odiversit	y Apply	Apply	
CO3. To develop technologies to analyse the air, water and soil pollution and solve the problems													Apply	ý		
CO4. To evaluate the social issues and apply suitable environmental regulations for a sustainable Evaluate the social issues and apply suitable environmental regulations for a sustainable Evaluate the social issues and apply suitable environmental regulations for a sustainable Evaluate the social issues and apply suitable environmental regulations for a sustainable Evaluate the social issues and apply suitable environmental regulations for a sustainable Evaluate the social issues and apply suitable environmental regulations for a sustainable environmental regulations for a sustainable environmental regulation environmental regulations for a sustainable environmental environmental regulations for a sustainable environmental												e Evalı	ıate			
CO5. To identify and analyse the urban problems, population on human health and environment Anal													yse			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	М	L	-	-	S	S	S				S	-	-	-	
CO2	S	М	М	-	-	S	S	S				S	-	-	-	
CO3	S	L	М	-	-	S	S	S				S	-	-	-	
CO4 S S S L - S S S S													-			
CO5	S	S	S	М	-	S	S	S	-	-	-	S	Nit	M	-	
S- Strong; M-Medium; L-Low																

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT -I ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources- Use and overexploitation, deforestation, case studies- Water resources: Use and over-utilization of surface and ground water, dams-benefits and problems -Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies - Food resources: World food problems, Agricultureeffects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies - Energy resources: Renewable and non renewable energy sources, use of alternate energy sources, Scope & role of engineers in conservation of natural resources.

UNIT -II ECOSYSTEMS AND BIO - DIVERSITY

Ecosystem - Definition, structure and function - Food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest and Aquatic ecosystems - pond and sea, Introduction to biodiversity, Levels of biodiversity: genetic, species and ecosystem diversity - Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values –India as a mega-diversity nation - hot-spots of biodiversity - Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India - Conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. 9 hrs

UNIT –III ENVIRONMENTAL POLLUTION

Pollution - Definition, causes, effects and control measures of Air, Water and Land pollution, Solid wastesolid waste Management,-Disaster management: Floods, earthquake, cyclone, landslides and tsunamis -Clean technology options, Low Carbon Life Style.

UNIT-IV SOCIAL ISSUES AND ENVIRONMENT Sustainable Development- Water conservation - rain water harvesting, watershed management -

Resettlement and rehabilitation of people, case studies -Climate change - Global warming - Acid rain -Ozone depletion- Environment Protection Act - Air (Prevention and Control of Pollution) act - Water (Prevention and control of Pollution) act - Wildlife protection act - Forest conservation act- Pollution Control Board-central and state pollution control boards.

UNIT-V HUMAN POPULATION AND ENVIRONMENT

9 hrs Population – Population growth & Population Explosion – Family welfare programme - Environment & human health - Human rights - Value education -AIDS/HIV, Role of information technology in environment and human health.

TEXT BOOK

- 1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.
- 2. Erach Bharucha "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Benny Joseph "Environmental Science and Engineering", Tata Mc Graw-Hill, New Delhi

REFERENCES:

1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998. 2. Anubha Kaushik and C.P Kaushik "Perspectives of Environmental Studies", New age international publishers.

3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and Standards Vol I Prof & Head. & II. Enviromedia.

4. Environmental Science and Engineering by Dr. J. Meenambal, MJP Publication, Chennal Gilbert M. Masters: Introduction to Environmental Engineering and Science, Pearson EducationPvtLtd., II Edition, ISBN 81-297-0277-0,2004.

5. Miller T.G.Jr. Environmental Science Wads worth Publishing. Co.

6. Townsend C. Harper J. and Michael Begon, Essentials of Ecology, Blackwell Science.

9 hrs

9 hrs

9 hrs

COUI	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Department/Name of the College	Email ID
1.	Dr. K. Sanghamitra s	ASSOCIATE PROFESOR	Chemistry /AVIT	sanghamitra.chemistry @avit.ac.in
2.	A. Gilbert Sunderraj	ASSOCIATE PROFESOR	Chemistry / VMKVEC	gilbertsunderraj@vmk vec.edu.in

Mitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3/1	21B27	MATHEMATICS FOR DATA SCIENCECategoryLTPCreditFC-BS2103														
541	21027									FC-B	S	2	1	0		3
PREA	MBLE															
Linear	Algebr	a plays	s a fund	lamenta	ıl role i	n the th	neory of	f Data	Science	e. This co	ourse air	ns at in	roducir	ig the l	oasio	c notions
of vect	or spac	es, Lin	ear Alg	ebra an	d the u	se of Li	near A	lgebra	in appli	cations t	o Data S	cience				
PRER	EQUIS	SITE: 1	NIL													
COUR	RSE OBJECTIVES															
1.	To understand basic mathematical concepts in data science, relating to linear algebra, probability, and calculus.															
2.	To employ methods related to these concepts in a variety of data science applications.															
3.	To apply logical thinking to problem-solving in context.															
4.	To use appropriate technology to aid problem-solving and data analysis.															
COUR	SE OU	JTCO	MES													
On the	success	sful co	mpletio	n of the	e course	e, stude	nts will	be able	e to							
CO1. 7	Го unde	erstand	the fun	dament	al prop	erties o	f matri	ces, the	eir norm	ns, and th	eir appli	ications		U	nder	stand
CO2. To of the g	Fo unde gradient	erstand t and th	the conne hessia	acepts o an matr	of Differ ix.	rentiati	ng/inte	grating	multip	le variab	le functi	ons, and	the rol	e U	nder	stand
CO3. 7 multipl	Γο learr le varia	1 about bles	Basic J	properti	es of o	ptimiza	tion pro	oblems	involv	ing matri	ices and	function	ns of	U	nder	stand
MAPP	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES															
COS	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03															
CO1	S S M M M M M M															
CO2	S	S	М	М	М							М	М	М		М
CO3	S	S	М	М	М							М	М	Μ		М
S-Stro	ötrong; M-Medium; L-Low															

S- Strong; M-Medium; L-Low

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

INTRODUCTION TO VECTOR SPACES

Vector Spaces: Rn and Cn, lists, Fnand digression on Fields, Definition of Vector spaces, Subspaces, sums of Subspaces, Direct Sums, Span and Linear Independence, bases, dimension, LINEAR MAPS: Definition of Linear Maps - Algebraic Operations on - Null spaces and Injectivity - Range and Surjectivity - Fundamental Theorems of Linear Maps - Representing a Linear Map by a Matrix - Invertible Linear Maps - Isomorphic Vector spaces - Linear Map as Matrix Multiplication - Operators - Products of Vector Spaces - Product of Direct Sum - Quotients of Vector spaces.

EIGENVALUES, EIGENVECTORS, AND INNER PRODUCT SPACES

Eigenvalues and Eigenvectors - Eigenvectors and Upper Triangular matrices - Eigenspaces and Diagonal Matrices -Inner Products and Norms - Linear functionals on Inner Product spaces, MATHS FOR DATA SCIENCE: Singular value decomposition - Handwritten digits and simple algorithm - Classification of handwritten digits using SVD bases - Tangent distance - Text Mining

CALCULUS:

Functions of Several Variables - Limits and continuity in HIgher Dimensions - Partial Derivatives - The Chain Rule - Directional Derivative and Gradient vectors - Tangent Planes and Differentials - Extreme Values and Saddle Points - Lagrange Multipliers, CONVEX OPTIMIZATION: Affine and Convex Sets - Hyperplanes and half-spaces - Euclidean balls and ellipsoids - Norm balls and Norm cones - polyhedra - simplexs - The positive definite cone.separating and supporting hyperplanes.

NORMS AND INNER PRODUCT SPACES:

Introduction - Inequalities on Linear Spaces - Norms on Linear Spaces - Inner products - Orthogonality - Unitary and Orthogonal Matrices - norms for matrices

GRAPHS:

Graphs - subgraphs - factors - Paths - cycles - connectedness - trees - Euler tours - Hamiltonian cycles - Planar Graphs - Digraphs, Algorithms - Representing Graphs - The algorithm of Hierholzer - Writing algorithms -Complexity of Algorithms.

TEXT BOOKS:

1. S. Axler, Linear algebra done right, Springer 2017.

2. Elden Lars, Matrix methods in data mining and pattern recognition, Society for Industrial and Applied Mathematics, 2007.

3. M.D.Weir, J. Hass, and G.B.Thomas, Thomas' calculus, Pearson, 2016.

4. S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ. Pr., 2011.

5. D. Jungnickel, Graphs, networks and algorithms. Springer, 2014.

COURSE DESIGNERS	

S.No	Name of the Faculty	Designation	Name of the College	EmailTD
1.	Dr.L.Tamilselvi	Professor	Maths /	ltamilselvi@avit.ac.in
-		Ductoccou		Dr. M. NITHYA.
2.	Dr.P.Sasikala	Protessor	VMKVEC Dep	sasikalapky/vulk/vec.edu.in

V.M.K.V. Engg. Conces,

34121B26

MATHEMATICS FOR ARTIFICIAL	Category	L	Т	Р	Credit
INTELLIGENCE AND MACHINE LEARNING	FC-BS	2	1	0	3

PREAMBLE

Machine learning (ML) is one of the most popular topics of nowadays research. This particular topic is having applications in all the areas of engineering and sciences. Various tools of machine learning are having a rich mathematical theory.

Therefore, in order to develop new algorithms of machine/deep learning, it is necessary to have knowledge of all such mathematical concepts. In this course, we will introduce these basic mathematical concepts related to the machine/deep learning. In particular, we will focus on topics from matrix algebra, calculus, optimization, and probability theory those are having strong linkage with machine learning. Applications of these topics will be introduced in ML with help of some real-life examples

PREREQUISITE: NIL

COURSE OBJECTIVES

- 1. To study about the problem of supervised learning from the point of view of function approximation, optimization, and statistics
- 2. To identify the most suitable optimization and modelling approach for a given machine learning problem
- **3.** To analyse the performance of various optimization algorithms from the point of view of computational complexity (both space and time) and statistical accuracy
- 4. To implement a simple neural network architecture and apply it to a pattern recognition task

COURSE OUTCOMES

- On the successful completion of the course, students will be able to
- CO1. Understand the problem of supervised learning from the point of view of function approximation, optimization, and statistic Understand
- CO2. Understand the most suitable optimization and modelling approach for a given machine learning problem Understand
- **CO3.** Analyse the performance of various optimization algorithms from the point of view of computational complexity (both space and time) and statistical accuracy
- **CO4.**To analyse a simple neural network architecture on a pattern recognition task

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	S	М	М	М	-	-	-	-	-	-	М	М	М	М	
CO2	S	S	М	М	М	-	-	-	-	-	-	М	М	М	М	
CO3	S	S	М	М	М	-	-	-	-	-	-	М	М	М	М	
CO4	S	S	М	М	М	-	-	-	-	-	-	М	S	S	M	
~ ~																

S- Strong; M-Medium; L-Low

With M

Analyse

LINEAR ALGEBRA

LINEAR ALGEBRA BASICS - Vector spaces and subspaces, basis and dimensions, linear transformation, four fundamental subspaces,

MATRICES

MATRIX THEORY- Norms and spaces, eigenvalues and eigenvectors, Special Matrices and their properties, least squared and minimum normed solutions, MATRIX DECOMPOSITION ALGORITHMS- SVD: Properties and applications, low rank approximations, Gram Schmidt process, polar decomposition.

DIMENSIONALITY REDUCTIONS:

DIMENSIONS REDUCTION ALGORITHMS and JCF- Principal component analysis, linear discriminant analysis, minimal polynomial and Jordan canonical form, CALCULUS: – Basic concepts of calculus: partial derivatives, gradient, directional derivatives, jacobian, hessian, , convex sets, convex functions and its properties

PROBABILITY AND OPTIMIZATIONS:

PROBABILITY – Basic concepts of probability: conditional probability, Bayes' theorem, independence, theorem of total probability, expectation and variance, few discrete and continuous distributions, joint distributions and covariance.

OPTIMIZATION – Unconstrained and Constrained optimization, Numerical optimization techniques for constrained and unconstrained optimization: Newton's method, Steepest descent method, Penalty function method.

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES – Introduction to SVM, Error minimizing LPP, concepts of duality, hard and soft margin classifiers

TEXT BOOKS:

1. W. Cheney, Analysis for Applied Mathematics. New York: Springer Science+Business Medias, 2001.

2. S. Axler, Linear Algebra Done Right (Third Edition). Springer International Publishing, 2015.

3. J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer Science+Business Media, 2006. 4. J. S. Rosenthal, A First Look at Rigorous Probability Theory (Second Edition). Singapore: World Scientific

Publishing, 2006.

COUI	RSE DESIGNERS			
S.No	Name of the Faculty	Designation	Name of the College	Email ID
1.	Dr.L.Tamilselvi	Professor	Maths / AVIT	ltamilselvi@avit.ac.in
2.	Dr.P.Sasikala	Professor	Maths / VMKVEC	

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	1E01	FC	DUND.	ATION	NS OF	COM	PUTIN	IG AN	D	Categ	ory	L	Т	Р	Cre	edit
5502			IKU	GKAN Pl	RACT	ICALS	S)	AND		FC-E	S	2	0	2	3	3
PREA This co installa comma	MBLE ourse a ation, a ands an	ims to nd emp d inter	o provi phasizii net bas	de the ng prin ics.	funda ciples	mental progra	conce	epts of langua	Comp ages. St	uter ope tudying	erations the fund	like lamei	hare ntals	dware databa	and soft se langu	tware ages,
PRER	QUISI	TE – 1	NIL													
COUR	RSE OF	BJECT	TIVES													
1.	To provide basic knowledge of hardware components of computers and classifications.															
2.	To introduce and demonstrate various Operating System functions and software. Software application packages.															
3.	To stu	ıdy Pri	nciples	of pro	gramm	ing and	applic	cations	of prog	grammin	g.					
4.	To lea	arn abo	out vari	ous Da	tabase	Manag	ement	System	s langu	ages and	d comm	ands	used	•		
5.	To lea	arn bas	ics of I	nternet	and W	eb ser	vices.									
COUR	URSE OUTCOMES															
On the	the successful completion of the course, students will be able to															
CO1. I	Basic kı	nowled	lge on c	comput	er hard	ware a	nd its f	unction	ns.			1	Unde	erstand		
CO2.K wares.	Inowled	lge of]	Fundar	nentals	of vari	ious Oj	perating	g Syste	m func	tions and	d soft	1	Unde	erstand		
CO3.P	rinciple	es of pr	ogram	ming a	nd cate	gories	of prog	rammi	ng lang	guages.		1	Appl	У		
CO4. I	Databas	e Man	agemer	nt Syste	ems lan	guages	s and th	eir clas	sificati	ions.		1	Appl	У		
CO5.D	emons	trates t	he Inte	rnet Ba	sics.							1	Appl	У		
MAPF	PING V	VITH	PROG	RAM	ME OU	JTCOI	MES A	ND PF	ROGR	AMME	SPECI	FIC (OUT	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-		S	Μ	-
CO2	S	Μ	Μ	-	Μ	-	-	-	-	-	-	Μ	[S	Μ	М
CO3	S	S	S	-	Μ	-	-	-	-	-	-	-		S	-	М
CO4	S	S	S	-	S	-	-	-	-	-	-	-		S	Μ	Μ
CO5	S	Μ	Μ	-	Μ	-	-	-	-	-	-	S		S	Μ	Μ
S-Stro	ong; M-	Mediu	m; L-L	ow												
SYLL Introd	LLABUS roduction to computers:															

Characteristics of computers, Classification of Digital Computer Systems: Microcomputers, Minicomputers, Mainframes, Supercomputers. Anatomy of Computer: Introduction, Functions & Components of a Computer, Central Processing Unit, Microprocessor, Storage units, Input and output Devices. How CPU and memory works.

Program execution with illustrative examples. Lab Component- PC Assembly,

Operating System Fundamentals:

Operating Systems: Introduction, Functions of an operating System, Classification of Operating Systems, System programs, Application programs, Utilities, The Unix Operating System, Basic Unix commands, Booting. Lab Component, Basic Unix commands

Introduction to Principles of programming

Introduction to Programming, Programming Domain : Scientific Application, Business Applications, Artificial Intelligence, Systems Programming, Web Software Categories of Programming Languages: Machine Level Languages, Assembly Level Languages, High Level Languages, Problem solving using Algorithms and Flowcharts

Introduction to Database Management Systems

Database, DBMS, Why Database -File system vs DBMS, Database applications, Database users, Introduction to SQL, Data types, Classification of SQL-DDL with constraints, DML, DCL, TCL Lab Component Create: Table and column level constraints- Primary key, Foreign key, Null/ Not null, Unique, Default. Check, Alter, Drop, Insert, Update, Delete, Truncate, Select: using WHERE, AND, OR, IN, NOT IN

Internet Basics

Introduction, Features of Internet, Internet application, Services of Internet, Internet Service Providers, and Domain Name System.

Web Basics Introduction to web, web browsers, http/https, URL, HTML, CSS

Lab Component -HTML & CSS, web Browsing, Emails, Searching

TEXT BOOKS:

- 1. J. Glenn Brookshear,"Computer Science: An Overview", Addision-Wesley, Twelfth Edition, 2014 **REFERENCES:**
- 1. "Concepts of programming language" Concepts of Programming Languages Eleventh Edition GLOBAL Edition Robert W. Sebesta, 2019.
- **2.** Knuth D.E., "The Art of computer programming Vol 1: Fundamental Algorithms", 3rd Edition, Addison Wesley, **2011**

COUF	RSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in
2	Mrs.T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3462	1E01	E	BASIC	S OF E	Categ	ory	L	Т	Р	С	redit						
				A. BA	ASIC E		RICAL	LEKING	J NEER	ING	FC-E	S	2	0	0		2
PREA It is a pherein	MBLE prelimir are proj	nary con jected t	urse wh o delive	nich hig er expla	hlights nation	the basi on basic	ic conce c electri	epts and ical eng	l outling	e of Elec g for beg	etrical en ginners o	gineer f all e	ring. ngin	. The c neering	oncep gradu	ts dis ates.	scussed
PRER	EQUIS	SITE –	NIL														
COUR	SE OB	JECT	IVES														
1	To explain the basic laws used in Electrical circuits and various types of measuring instruments.																
2	To explain the different components and function of electrical dc and ac machines.																
3	To understand the fundamentals of safety procedures, Ear thing and Power system.																
COUR	RSE OU	JTCON	MES														
On the	success	sful cor	npletio	n of the	course	, studen	ts will	be able	to								
CO1: E	Explain	the ele	ctrical o	quantiti	es and b	pasic lav	ws of el	ectrical	engine	ering.			Rer	membe	r		
CO2: I	Demons	trate O	hm's a	nd Fara	day's L	aw.							Ap	ply			
CO3: I	Describe	e the ba	isic con	cepts of	f measu	iring ins	strumen	nts.					Un	derstan	d		
CO4:]	Explain	the op	eration	of elect	rical m	achiner	ies and	its app	lication	s.			Un	derstan	d		
CO5: E	Explain	the ele	ctrical s	safety a	nd prote	ective d	evices.						Un	derstan	d		
CO6: Conven	Compaı itional a	the the the	various -conve	types ntional	electric sources	al pow	er gene	eration	system	s by ap	plication	of	Ana	alyze			
MAPP	ING W	ITH I	PROGI	RAMM	E OUI	COMI	ES ANI	D PRO	GRAM	ME SPI	ECIFIC	OUT	CO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	2	PSO1	PSC)2	PSO3
C01	S	М	-	-	М	L	-	-	-	L	М	L		S	M		L
CO2	S	М	М	L	М	-	-	-	S	М	М	L		S	L		-
CO3	S	М	М	М	М	-	-	-	-	L	М	L		S	М		L
CO4	S	М	L	L	М	L	-	-	-	L	М	L		S	L		-
CO5	S	М	L	-	М	S	-	-	-	L	L	L		-	-		-
CO6	S	М	-	-	М	L	S	L	-	L	L	L		М	L		М
S- Stro	ng; M-l	Mediur	n; L-Lo)W													

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

ELECTRICAL CIRCUITS AND MEASUREMENTS

Electrical quantities - Charge, Electric potential, current, power and Energy, Passive components (RLC)- Fundamental laws of electric circuits-steady solution of DC circuits - Introduction to AC circuits- Sinusoidal steady state analysis-Power and Power factor - Single phase and Three phase balanced circuits - Classification of Instruments-Operating Principles of indicating instruments.

ELECTRICAL MACHINES

Faraday's Law, Construction, Principle of operation, Basic Equation and Applications of DC & AC Generators and Motors - Single Phase Transformer, Single phase and Three phase Induction Motor.

ELECTRICAL SAFETY AND INTRODUCTION TO POWER SYSTEM

Protection & Safety - Hazards of electricity - shock, burns, arc-blast, Thermal Radiation, explosions, fires, effects of electricity on the human body. Electrical safety practices, Protection devices.

Types of Generating stations, Transmission types & Distribution system (levels of voltage and power ratings)- Simple layout of generation, transmission and distribution of power.

TEXT BOOKS:

- 1. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth Edition, Chand. S&Co, 2012.
- 2. Kothari.D.P and Nagrath.I. J, "Basic Electrical Engineering", Second Edition, Tata McGraw-Hill, 2009.
- 3. R.K.Rajput, "Basic Electrical and Electronics Engineering", Second Edition, Laxmi Publication, 2012.

REFERENCE BOOKS:

1. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second Edition, PHI Learning, 2007.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department/ Name of the College	Mail ID									
1	Dr. R. Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in									
2	Dr. G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu. in									
3	Ms. D. Saranya	Assistant Professor (Gr-II)	EEE/AVIT	dsaranya@avit.ac.in									
4	Mr. S. Prakash	Assistant Professor (Gr-II)	EEE/AVIT	sprakash@avit.ac.in									

COUDCE DECICNEDO

N. Hith

Dr. M. NITHYA Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3462	1 = 0 1	BA	SICS	OF EL	ECTR	ICAL .	AND E	LECT	RONI	CS C	ategory	L	Т	P C	redit
3402			B. I	BASIC	ELEC	TRON	UICS E	NGIN	r EERIN	G	FC-ES	2	0	0	2
PREA The co engine transis	The course aims to impart fundamental knowledge on electronics components, digital logics and communication engineering concepts. The course begins with classification of various active and passive components, diodes and transistors. It enables the student to design small digital logics like multiplexer, de-multiplexer, encoder, decoder circuits, etc. It crafts the students to get expertise in modern communication systems.														
PRER	QUISI	TE – N	NIL		811 11										
COUR	RSE OI	BJECT	IVES												
1	To lea	ırn and	identif	y vario	us activ	ve and p	passive	compo	nents a	nd their	working	princip	les.		
2	To un	derstan	nd the n	umber	conver	sion sys	stems a	and wor	king Pr	rinciples	of logic	gates.			
3	To lea	rn the	digital	logic pi	rinciple	es and r	ealize a	udders,	multipl	exer, etc	•••				
4	To un	derstan	nd the a	pplicati	on-orie	ented co	oncepts	s in the	Various	s commu	inication	system	8.		
COUH	RSE OU	UTCO	MES												
On the	succes	sful co	mpletio	on of th	e cours	e, stude	ents wi	ll be ab	le to						
CO1. 1 compo	Interpre ments li	et work ike resi	ing pri stors, c	nciple a	and app ors, indu	plicatio uctors,	n of va diodes	arious a and tra	ctive a nsistors	nd passi	ve electr	onic	Understa	und	
CO2. operation	Constru ions.	ict the	rectifie	er, Clip	per, Cl	amper,	regula	tor circ	uits an	d explor	e their		Apply		
CO3. I	Execute	numbe	er syste	em conv	version	s and co	ompute	severa	l digita	l logic op	perations		Apply		
CO4. data in	Design put.	adders	, Multi	plexer,	De-M	ultiplex	ker, En	coder,	Decode	er circuit	ts for give	ven	Apply		
CO5.	Expose ed gadg	the we ets like	orking the UI	princip ID, OL	les of ED, H	moderi DR and	n techn l variou	ologies 1s comr	s in dev nunicat	veloping ion syste	applicatems.	tion-	Understa	und	
MAPI	PING V	VITH	PROG	RAMN	1E OU	TCOM	IES AI	ND PR	OGRA	MME S	PECIFI	C OUT	COME	S	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	Μ	Μ	Μ	-	-	Μ	-	L	-	-	L	-	Μ	-
CO3	S	Μ	Μ	-	-	-	-	-	L	-	-	-	S	-	-
CO4	S	Μ	Μ	Μ	-	-	Μ	-	L	-	-	L	М	-	-
CO5	S	М	-	-	-	-	-	-	L	L	-	L	S	-	L
S-Stro	ong; M-	Mediu	m; L-L	ow											

M. Hith

SEMICONDUCTOR DEVICES

Passive and Active Components - Resistors, Inductors, Capacitors- Intrinsic Semiconductor, Extrinsic Semiconductor, Energy band diagram- Conductor, insulator, semiconductor, Characteristics of PN Junction Diode - Zener Diode and its Characteristics - Half wave and Full wave Rectifiers, Voltage Regulation- Simple wave shaping circuits- Clipper, Clamper. Bipolar Junction Transistor, JFET, MOSFET & UJT.

DIGITAL FUNDAMENTALS

Number Systems – Binary, Octal, Decimal and Hexa-Decimal – Gray Code- Conversion from one to another – Logic Gates and its characteristics – AND, OR, NOT, XOR, Universal Gates – Adders, Multiplexer, De Multiplexer, Encoder, Decoder – Memories.

COMMUNICATION AND ADVANCED GADGETS

Modulation and Demodulation – AM, FM, PM, PCM, DM– RADAR – Satellite Communication – Mobile Communication, Optical communication, Microwave communication. LED, HD, UHD, OLED, HDR & Beyond, Smart Phones – Block diagrams Only.

TEXT BOOKS:

- 1. R.K. Rajput, "Basic Electrical and Electronics Engineering", Laxmi Publications, Second Edition, 2012.
- 2. Dr.P.Selvam, Dr.R.Devarajan, Dr.A.Nagappan, Dr.T.Muthumanickam and Dr.T.Sheela, "Basic Electrical and Electronics Engineering", Department of EEE & ECE, Faculty of Engineering & Technology, VMRFDU, Anuradha Agencies, 2018.
- 3. Edward Hughes, "Electrical and Electronics Technology", Pearson Education Limited, Ninth Edition, 2005.

REFERENCES:

1. John Kennedy, "Electronics Communication System", Tata McGraw Hill, 2003.

COUH	COURSE DESIGNERS											
S.No ·	Name of the Faculty	Designation	Department/ Name of the College	Mail ID								
1	Dr.T.Sheela	Associate Professor	ECE / VMKVEC	sheela@vmkvec.edu.in								
2	Mrs.A.Malarvizhi	Assistant Professor	ECE/ VMKVEC	malarvizhi@vmkvec.edu.in								
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE / AVIT	rrmdkarthikeyan@avit.ac.in								
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE / AVIT	mohanapriya@avit.ac.in								

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350211	Ξ02	PYTHON PROGRAMMING (THEORY AND PRACTICALS)CATEGORYLTPCREDIT													
PREAM The purp code for powerful	BLE ose of t differe open so	his con nt ope ource p	urse is trating progran	to intro system	oduce is alo: tool	Pytho ng wit	n, a rer h appli	narkab	ly pow domai	erful dy n. Pytho	2 namic p	0 program evolve	2 nming 1 d on n	languag nore po	3 ge to write opular and
PRERQU	UISITE	E:NIL													
COURSI	E OBJI	ECTIV	ES												
1.	To pr	ovide b	oasic kr	nowled	ge on	Pythor	n progra	ammin	g conce	epts.					
2.	To int	roduce	e differ	ent me	thods	in list,	string,	tuple, o	lictiona	ary and s	ets.				
3.	Тосо	mpute	differe	nt prog	,rams	using p	oython	control	statem	ents.					
4.	To lea	ırn abo	out diffe	erent fu	inction	ns in p	ython.								
5.	То со	mpute	the exc	ception	handl	ling fu	nctions,	file co	oncepts	and CS	V and JS	SON.			
COURS	E OUT	COM	ES												
On the su	e successful completion of the course, students will be able to														
CO1. Lea	arn pyth	ion stat	tement	s, comi	nents	and in	dentatio	on, tok	ens, inp	out and o	utput		Unde	rstand	
CO2. Ap	ply the	differe	example ent metl	hods in	volve	d in Li	st, Strin	ng, Tup	oles and	Diction	ary.		Apply	v	
CO3. Des	sign sol s.	utions	for cor	nplex j	progra	ms usi	ng deci	sion m	aking a	ind loopi	ing		Appl	y.	
CO4.App generator	oly the fs.	unctio	n progi	ams w	ith all	the co	ncepts	like laı	nbda, d	lecorator	s and		Appl	у.	
CO5. Concepts	mpute t	he exc	eption	handlir	ıg pro	grams,	file co	ncept p	orogran	ns and ur	nderstan	d the	Appl	у	
MAPPIN	G WI	FH PR	OGRA	AMMF	E OUT	ГСОМ	IES AN	D PR	OGRA	MME S	PECIF	IC OU	TCON	1ES	
	20	-		-	Р		20		7.0	201	701			20	
COS	РО 1	PO 2	PO 3	PO 4	0	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 12	PS 01	PS O2	PSO3
CO1	S	М	М	М	M	-	-	-	-	_	_	-	M	М	М
CO2	S	М	М	М	М	_	-	_	-	_	-	_	S	М	М
CO3	М	S	S	S	М	-	-	-	-	-	-	-	М	М	М
CO4	S	S	S	S	М	-	-	-	-	-	-	-	S	S	М
CO5	S	М	М	М	М	-	-	-	-	-	-	-	S	М	М
S- Strong	; M-Me	edium;	L-Low	1	<u> </u>						1			II	
											(N	H.1	Л	

INTRODUCTION

Introduction to python-Advantages of python programming-Tokens-Variables-Input/output methods-Data types-Operators

DATA STRUCTURES

Strings-Lists-Tuples-Dictionaries-Sets

CONTROL STATEMENTS

Flow Control-Selection control Structure-if-if-else-if-else-if-else-Nested if iterative control structures-while loop, for loop and range.

FUNCTIONS

Declaration-Types of Arguments-Fixed arguments, variable arguments, keyword arguments and keyword variable arguments-Recursions-Anonymous functions: lambda- Decorators and Generators.

EXCEPTION HANDLING

Exception Handling-Regular Expression-Calendars and clock files: File input/output operations-Dictionary operations-Reading and writing in structured files: CSV and JSON.

LIST OF EXPERIMENTS

- 1. Write a program to sum of series of N natural numbers
- 2. Write a program to calculate simple interest.
- 3. Write a program to generate Fibonacci series using for loop
- 4. Write a program to calculate factorial using while loop
- 5. Write a program to find the greatest of three numbers using if condition
- 6. Write a program for finding the roots of a given quadratic equation using conditional control statements
- 7. Write a program to find the greatest of three numbers using conditional operator
- 8. Write a program to compute matrix multiplication using the concept of arrays
- 9. Write a program to implement recursive function
- 10. Write a program to read and write data using file concepts

TEXT BOOKS:

- 1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 2st Edition, O'Reilly Media, 2019.
- 2. Programming With Python- II 'Himalaya Publishing House Pvt Ltd, 2018.
- 3. "<u>Dive Into Python3</u>" by Mark Pilgrim, 2012

REFERENCES:

- 1. Mark Lutz, "Learning Python", 6th Edition, O'Reilly Media, 2014.
- 2. David Beazley, Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2015.
- 3. Mark Lutz, "Python Pocket Reference", 6th Edition, O'Reilly Media, 2015.

COURSE DESIGNERS

S.No.	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	Mr. K.Karthik	Assistant Professor	CSE/ AVIT	karthik@avit.ac.in
2	Dr.V.Amirthalingam	Assistant Professor	CSE/ VMKVEC	amirthalingam@vmkvec.edu.in

BASICS OF CIVIL AND MECHANICAL ENGINEERING								Category	L	Т	Р	Credit			
344	21E01		PAR	RT-ABA	SICS	OF CI	VIL EN	GINE	ERING	ř					_
				(C	ommo	n to Al	Branc	hes)			FC-ES	2	0	0	2
PREA	MBLE	: Thea	im of th	ne subje	ct is to	provide	e a fund	amenta	l knowl	edge of	basic Civi	l Engin	eering		
PRER	EQUIS	SITE-N	IIL												
COUR	SE OB	JECT	IVES												
1	1 To understand the basic concepts of surveying and construction materials.														
2	2 To impart basic knowledge about building components.														
COURSEOUTCOMES															
On tl	On the successful completion of the course, students will be able to														
C01.A	CO1.An ability to apply knowledge of mathematics, science, and engineering. Apply														
CO2. An ability to design and conduct experiments, as well as to analyze and interpret data. Apply															
MAPP	MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES														
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	2	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	S	-	-	-	-	-	-	М	-	-
CO2 S M L S M S - - M - - - S. Strong: M. Medium: L. Low											-	S	-		
S-Strong; M-Medium; L-Low SVLLABUS															
STELADOS SURVEYINGANDCIVILENGINEERINGMATERIALS															
SURV	${\small SURVEYING:} Objects-types-classification-principles-measurements of distances-angles-levelling-determination of a reasurement of the second seco$														
illustra	tive exa	Imples.		TERI	ALS'B	ricks _s	tones_s	and _c	ement _	-concret	e mix desi	on and i	Quantity	computa	tion_
steelse	ctions.			11200	AL 3.D		stones-s		- ment -			gir and	Quantity	computa	lion–
BUILI	DINGC	OMPO	ONENI	ſSAND	STRU	CTUR	ES:								
FOUN	DATI(DNS:T	ypes,Sa	fe Beari	ngcapa	city of	Soil –R	equiren	nent of g	goodfou	ndations.	fine	flaaring		
Mecha	nics – I	nternal	and ex	ck mase ternal fo	onry – s orces –]	Load T	asonry - ransforr	- beam	s – colu Mechan	unns – 1 uism in S	Intels – roc Structural H	Element	nooring - s– stress	– plasteri – strain -	ng – -
elastici	ty - Ty	pes of	Bridges	and Da	ams – E	Basics o	f Interio	orDesig	nandLa	indscapi	ng– water	supply	- sourc	es and	
quality	of wate	er — R	ain wat	er harve	esting –	— intro	duction	to high	way an	d rail w	yay.				
TEXT	BOOK	S: il and l	Machan	ical En	rinoorii	ος" VΛ	ALL (20	17) Co	mnany	Ltd N	wy Dolhi 2	000			
1. B	asic Civ	il Eng	ineering	g", S.S.	Bhavik	atti., N	ew age	Internat	tional P	ublishe	rs.	007.			
3. "R	einforce	ed Con	crete St	ructure	s" B.C.	Punmi	a, Vol. 1	1 & 2, -	Laxmi	Publica	tions, Dell	ni, 2004	•		
	RENC	ES:	DagiaCi	vilEn ai		"Dham	matuaiD.	hlichin	Co (D)I + J)(000				
2. See	tharama	uns., 1 unS.,"B	BasicCiv	vilEngin	leering	, Dhan ',Anura	idhaAge	encies.	igCo.(P)Ltd.,20	109.				
3. IS 10262 : 2009 "Concrete Mix Proportioning – Guidelines"															
COUR	SEDE	SIGNE	ERS								1				
S.	Na	meoftl	neFacu	lty	D	esigna	tion		Jeparti	ment/Na	ame		Mai	lID	
190.				-		Ŭ			of the	Colleg	e				
1	S. Su	priya			Assis	t.Profes	ssor	Civi	l/ VMK	VEC	ja	insupriy	anair@g	mail.con	1
2	Mrs.	rs.P.A.Suriya Asst.Professor Civil/AVIT suriya@avit.ac.in													

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	BASICS OF CIVIL AND	Category	L	Т	Р	Credit
34421E01	MECHANICAL ENGINEERING B-BASICS OF MECHANICAL ENGINEERING	FC-ES	2	0	0	2

Preamble

This course provides a preliminary knowledge of the applications of mechanical engineering in our day to day life.

Prerequisite -- NIL

Course Objective

Course O	wjecuve						
1	To create a fundamental base of concepts used in mechanical engineering.						
2	To develop basic skills used in handling mechanical tools and equipments.						
Course Outcomes: On successful completion of the course, students will be able to							
CO1.	To relate scientific concepts for mechanical engineering applications.	Understand					
CO2.	To use practical hands on skills in handling mechanical and motorized tools and equipments.	Apply					

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	S	-	I	I	I	L	L	-	-	-	-	-			
CO2	S	-	-	-	-	L	L	-	-	-	-	-			

S- Strong; M-Medium; L-Low

Syllabus

Introduction of Mechanical Engineering

Engineering Mechanics – System of Forces, Friction and its types, Simple Harmonic Motion, Centripetal and Centrifugal force, Links, Degree of Freedom, Application in Robotics.

Basics of Thermodynamics

Thermodynamic System, Laws of Thermodynamics, Thermodynamic Cycles, Fuels and Combustion – Solid, Liquid and Gaseous Fuels, Refrigerators and Air Conditioners, IC Engines, Two and Four Stroke Engines, Gas Turbine Engines.

Basics of Engineering Materials

Pig Iron, Cast Iron, Wrought Iron, Heat Treatments, Steel, Stainless Steel, Non-ferrous metals and alloys, Light weight materials, High Temperature Materials, Mechanical Properties, Effect of Grain size on mechanical properties, Corrosion prevention, Materials used in aircraft structure and in ships.

Hydraulics and Fluid Mechanics

Properties of Liquid, Measurement of Pressure, Equilibrium of floating bodies, Types of flows in a pipe, Bernoulli's equation, Venturimeter, Orifice Meter, Pitot Tube, Hydraulic Turbines, Wind Mills.

Workshop Technology -

Hot Working, Cold Working, Casting, Welding, Safety Equipments - Gloves, Safety Glasses, Personal Protective Dr. M. NITHYA, Equipments, Mechanical Tools – Screw Driver, Hammer, File, Reamer, Chisel, Spanner, Hand Vice, Bench Vice, Hacksaw, Cutting Plier. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

Text Book	Text Books										
1	Basic Civil and Mechanical Engineering, School of Mechanical Engineering Sciences, VMU, Salem										
Reference	Reference Books										
1	Dan B Marghitu, Mechanical Engineer's Handbook, Academic Press, Auburn University, Alabama.										
2	K.Venugopal, Basic Mechanical Engineering, Anuradha Publications, Chennai										
3	N R. Banapurmath, Basic Mechanical Engineering, Vikas Publications, Noida										
4	T J Prabu, Basic Me	chanical Engineering	g, SCITECH Publication	ons, Chennai							
Course Do	esigners										
S.No	Faculty Name Designation Department / Name of the College Email id										
1	Dr. Sanjay Singh Professor Mech / VMKVEC sanjay@vmkvec.edu.in										

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34621	IE81	BASIC ELECTRICAL AND ELECT 1 ENGINEERING L							RONI	CS	Category	L	Т	Р	C	redit
0.01			A.	BASIC	ELEC		AL EN	GIN	EERIN	G	FC-ES	0	0	2		1
PREA It is a l types o	MBLE aborate f ear th	ory cou ing me	rse whi thods.	ich fam	iliarizes	the ba	sic elec	ctrica	l wiring	g, meas	urement o	f elect	rical q	luant	ities and	1 various
PRER	QUISI	TE – N	IIL													
COUR	SE OB	JECT	IVES													
1	1 To learn the residential wiring and various types of electrical wiring.															
2	2 To measure the various electrical quantities.															
3	3 To know the necessity and types of ear thing and measurement of earth resistance.															
COUR	COURSE OUTCOMES															
On the successful completion of the course, students will be able to																
CO 1: 1	1: Implement the various types of electrical wiring. Apply															
CO 2: 1	2: Measure the fundamental parameters of AC circuits. Analyze															
CO 3: 1	CO 3: Measure the earth resistance of various electrical machineries. Apply															
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	2 PS	01	PSO2	PSO3
CO1	S	М	L		S							L	Ν	Ν	L	
CO2	S	М	S	S					М			М	Ν	Ν	L	
CO3	L	S	L		S					L		L	N	M	L	
S- Stro	ng; M-	Mediur	n; L-Lo)W				-								
LIST (OF EX	PERIN	IENTS			C	· 1'	- 4 1	I	1						
1. K 2. Fl	uoresc	ai nou: ent lam	se wirin p wirin	ig using g.	switch	es, ruse	e, indica	ator, I	lamp an	ia energ	y meter.					
3. St	air case	e wiring	g.	0												
4. M	leasure	ment of	f electri	cal quai	ntities –	voltag	e, curre	ent, p	ower &	power	factor in F	RLC ci	rcuit.			
5. M	leasure	wiring	t energy	using s and Me	single p	hase er	iergy n	neter.	earth o	f an ele	ctrical equ	unmen	t			
REFE	RENC	ES	, Joints		asuren		constan		cartino		ettical eqe	npmen				
1. La	borator	y Refe	rence M	lanual.												
COUR	SE DE	SIGN	ERS					r			_	1			11 ID	
5.INO	of the College															
1	1 Dr. R. Devarajan Professor EEE/VMKVEC devarajan@vmkv							mkve	c.edu.in							
2	Dr. G.	Dr. G. Ramakrishnaprabu Associate Professor						EEE/VMKVEC ra			ramak	rishnap	rabu(@vmkvec.	edu.in	
3	Ms. D.	Saranya		As	sistant Pr	ofessor (Gr-II)		EF	EE/AVIT		dsaran	iya@av	it.ac.i	n	
4	Mr. S. I	Prakash		As	sistant Pr	ofessor (Gr-II)		EF	EE/AVIT		spraka	sh@av	it.ac.i	h	
	CN.															

2462	1 - 0 1	I	BASIC	ELEC	TRICA	L AN	D ELE	CTRO	NICS	Ca	ategory	L	Т	P C	credit
3402	IEOI	PAI	RT B -	EI BASIC	IGINE	ERINO TRON	G LAB	NGINE	ERING	Ĵ	FC-ES	0	0	2	1
PREA This co compo	MBLE ourse is nents ar	to prov nd elect	vide a pr ronic e	ractical quipme	knowle nts. It e	edge in nables	Basic I the stuc	Electron lents to	nics Eng constru	ineering ct and te	. It starts st simple	with far electror	niliariza nic proje	tion ofele	ectronic
PRER	QUISI	ΓE – N	IL												
COUR	RSE OB	JECT	IVES												
1	To far	niliariz	e the ele	ectronic	compo	onents,	basic el	ectronio	c equipi	nents an	d solderi	ng techn	iques.		
2	To study the characteristics of Diodes, BJT and FET.														
3	To understand the principles of various digital logic gates.														
4	To understand the concept of basic modulation techniques														
COUR	RSE OU	TCON	1ES												
On the successful completion of the course, students will be able to															
CO1. F	CO1. Familiarize with the fundamentals of soldering techniques. Understand														
CO2. C	Construc d and re	et exper everse r	riments esistanc	for PN	and Ze	ner dio	de chara	acteristi	ics also	determin	e diode	Ap	ply		
CO3. 0	Construc	et clipp	er and c	elamper	circuit	and ver	rify the	ir voltag	ge level	S		Ap	ply		
CO4. 0	Construc	ct and ju	ustify o	peration	n simple	e voltag	ge regul	ator for	given Z	Zener dic	ode	Ap	ply		
CO5. V	Verify th	ne truth	tables a	and cha	racteris	tics of 1	logic ga	ates (AN	ND, OR	, NOT, N	JAND,	Ap	ply		
MAPP	PING W	/ITH P	ROGR	AMM	E OUT	COME	ES ANI) PRO	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	L	-	-	-	М	-	-
CO2	S	М	М	М	-	-	М	-	L	-	-	L	-	М	-
CO3	3 S M M L S														
CO4	S	М	М	М	-	-	М	-	L	-	-	L	М	-	-
CO5	S M L L - L S - L														
S- Stro	ng; M-l	Mediun	n; L-Lo	W											

Syllabus

LIST OF EXPERIMENTS

Practicing of Soldering and Desoldering.
 Characteristics of PN junction Diode and find the forward and reverse resistance

N. Hith

3. Construct and Study simple clipper and clamper circuits

- 4. Characteristics of Zener diode and determine the break down voltage and diode resistance
- 5. Construct and Study simple voltage regulator using zener diode
- 6. Verification of Logic Gates.
- 7. Find the characteristics of AND ,NOR,NOT gate
- 8. Construct and Study simple voltage regulator using zener diode.

COURSE DESIGNERS	
------------------	--

S.No.	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	Dr.T.Sheela	Associate Professor	ECE / VMKVEC	sheela@vmkvec.edu.in
2	Mr.S.Selvaraju	Associate Professor	ECE / VMKVEC	selvaraju@vmkvec.edu.in
3	Mr.R.Karthikeyan	Assistant Professor (Gr-II)	ECE / AVIT	rrmdkarthikeyan@avit.ac.in
4	Ms.R.Mohana Priya	Assistant Professor (Gr-II)	ECE / AVIT	mohanapriya@avit.ac.in

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

			ENGINEERING SKILLS PRACTICALS LAB							ategory	y	L	Т	Р	C	redit	
34421	E84		Р	ART A	A- BAS	SIC CI	VIL			FC-ES	6	0	0	2		1	
				ENG	GINEE		;										
PRFA	MRI	F	(C	ommo	n to A	ll Brai	nches)										
Engine	ering	E Skills I	Practice	is a ha	unds-on	traini	ng prac	ctice to									
Mecha	inical,	Civilan	dMecha	tronics	Engine	erings	tudents	s.Itdeals	withfitti	ng,carp	entry,sh	eetmeta	aland	relate	d exe	rcises	
Also it	t will i	nduce t	the habi	t of sel	ecting	right to	ools, pl	anning	the job a	and its e	xecutio	n					
PRER NIL	EQU	ISITE															
COUH	COURSEOBJECTIVES																
1 To understand the basic concepts of building components.																	
2 T	To imp	art bas	ic know	ledge a	about P	lumpii	ng and	Carpent	ry work	as.							
COU	RSEO	UTCO	MES														
On t	On the successful completion of the course ,students will be able to																
CO1. F	Prepare	arethedifferenttypesoffitting and plumbing lines.											Apply	,			
CO2. Preparethedifferenttypesofjointsusingwoodenmaterial												Apply	,				
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES																	
		РО		РО		PO				PO1			PS	 P	S	PS	
COS	PO1	2	PO3	4	PO5	6	PO7	PO8	PO9	PO12	01	Ċ	02	03			
CO1	S	L L L L L L L L L L L							L	-		S	-				
CO2	S	S	S	L	L	L	L	L	L	L	L	L	L		-	Μ	
S-Stro	ng; M	-Mediu	ım; L-L	ow													
SYLL	ABUS	5															
Buildi	ngs: Stud	ly of pl	umhing	and ca	rnentru	comn	onente	of resid	ential a	nd indu	strial hu	uildinge	Safet	v acn	ecte		
ı. Plumł	ning a	nd Car	nentry	Work	s:	comp	onents	of resid		na maa		munigs	,Sale	.y asp	cets.		
2.	Stud	ly of pi	peline jo	oints, it	ts locat	ion an	d funct	ions: va	lves, taj	ps, coup	olings, u	nions, 1	educe	rs, el	oows	in	
	hous	sehold f	fittings.														
3.	Prep	aration	of plun	nbing l	ine ske	tches f	for wat	er suppl	y and se	ewage w	orks.						
4.	Han	ds on E	exrcise	on Der	monstra	ation o	f plum	bing rec	luireme	nts of hi	gh-rise	buildin	gs.				
<u>Carpe</u>	entryu Stud	<u>singPo</u>	werTo	<u>olsonly</u> in roof	<u>':</u> 	. win	lowe of	nd furni	turo								
5. 6	Han	ds-on-e	e jonns exercise	· Wood	s, uoon Iwork	s, wind ioints l	by saw	ing pla	nning gr	and cut	ting						
TEXT	BOO	K				jointo	oj sum										
1. Basic civil engineering Lab Manual by Department of Civil Engineering, VMRF.																	
COUL	KSED	ESIGN	NERS	Facult		D	aiana	tion			- 41	13	H.	M			
9.IN	J	INAL	neonne	r acuit	y.	D	esignation Department/			UT/	ID ID						
								of the College				Dr. M. NITHYA.					
	1	M.Sent	I.Senthilkumar Asst.Professor C					Civil/ V	MKVE	C se	enthilku	mar@	vmk	vec.ec	du.in		
	2	Dr.D.S	S.Vijayan Asst.Professor Civil/AVIT V.M.										r. Myayang aviteac, intem.				

ENGINEERING SKILLS PRACTICALS LAB B. BASIC MECHANICAL ENGINEERING

Category	L	Т	Р	Credit
FC-ES	0	0	2	1

Preamble

Workshop is a hands-on training practice to Mechanical Engineering students. It deals with fitting, carpentry, foundry and welding related exercises. Also, it will induce the habit of selecting right tools, planning the job and its execution.

Prerequisite -	Prerequisite –NIL										
Course Objective											
1	To perform the practice in different types of fitting processes.										
2	To executive joints using wooden materials.										
3	To apply in depth knowledge in metal joining processes.										
4	4 To demonstrate the pattern using foundry processes										
Course Outcomes: On the successful completion of the course, students will be able to											
CO1.	Perform the different types of fitting using MS plate.	Apply									
CO2.	Practice the different types of joints using wooden material	Apply									
CO3.	Demonstrate the different types of joints in metal by Arc Welding	Apply									
CO4.	Utilize the different types of green sand mould	Apply									
Mapping with Programme Outcomes and Programme Specific Outcomes											

(CO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO8	P O 9	PO 10	PO11	P 0 1	PS O1	P S O	PS O3
	101	G		T						Ń			2		2	
C	201	S	-		-	-	-	-	-	M	-	-	-	L	-	-
C	CO2	S	-	L	-	-	-	-	-	M	-	-	-	L	-	-
C	CO3	S	-	-	-	-	-	-	-	-	-	-	-	L	-	-
C	CO4	S	-	L	-	-	-	-	-	M	-	-	-	L	-	-
S- Strong; M-Medium; L-Low																
Syllabus																
LIST OF EXPERIMENTS																
Tee – Fitting																
Vee – Fitting																
Preparation of a mould for a single piece pattern																
Preparation of a mould for a split piece pattern																
Half- I	Lap Joint	in Carp	pentry													
Dove	Fail Joint	in Car	pentry													
Lap Jo	int – Wel	ding														
Butt Jo	oint – Wel	lding														
Text E	Books															
1		Basi	c Mech	nanical	Engin	eering	Manu	al By I	Departme	ent O	f Mech	nanical En	ginee	ring, V	/MR	F.
Refere	ence Bool	ks														
1		K.Ve	enugop	al, Bas	sic Me	chanic	al Eng	ineerin	ig, Anura	adha I	Publica	ations, Che	ennai			
2		NR.	Banap	urmath	, Basio	c Mech	nanical	Engin	eering, V	Vikas	Public	cations, No	oida			
Cours	e Designe	ers											M	M		
S.No	No Faculty Name Designation							Depa the C	artment College	/ Naı	ne of	Ema	ilid			
1	V K Kri	shnan	A	ssociat	e Prof	essor		Mech / VMKVEC vkkrishnan@vmkvec.edu.								
2	S. Durai	thilaga	r A	ssociat	e Profe	essor		Mecl	n / VMK	VEC	Dept. V.1	of CSAUL	uthila g. Coll	igar@	emkv em.	ec.e

34421E81 ENGINEERING GRAPHICS AND Category L											Г	Р		Credit		
044216	-01				DESI	GN			F	-C-ES	1	(0	4		3
Preamble																
Engineering	g Grapl	hics is	s refer	red as	langu	iage o	f engi	neers.	An e	ngineer	needs	to un	derst	and	the	physical
geometry of	f any	object	throu	ıgh its	ortho	ograph	ic or	pictori	al pro	jections.	The 1	knowl	edge	on	en	gineering
graphics is e	essentia	al in p	roposi	ng nev	v prod	uct the	ough	drawir	gs and	1 interpre	eting da	ata fro	om e	xisti	ng d	rawings.
This course	deals v	vith or	thogra	phic a	nd pic	torial p	project	ions, s	ection	al views	and de	velop	ment	of s	urfa	ces.
Prerequisit	e - NIL	_														
Course Obj	jective															
1	To in	nplem	ent the	ortho	graphi	c proje	ections	of poi	nts, st	raight lin	es, pla	ne sur	face	s and	l sol	ids.
2	To co	onstruc	ct the c	orthog	aphic	projec	tions of	of secti	oned s	olids and	l true s	hape	of the	e sec	tion	s.
3	To de	evelop	latera	l surfa	ces of	the un	cut an	d cut s	olids.			-				
4	To di	aw the	e picto	rial pr	ojectio	ons (iso	ometri	c and p	erspec	ctive) of s	simple	solids	5.			
5	To draw the orthographic views from the given pictorial view.															
Course Outcomes: On the successful completion of the course, students will be able to																
	Execute in the form of drawing of the orthographic projections of points. Apply															
COI.	straight lines, plane surfaces and solids.															
000	Dem	onstra	te in tl	he for	n of d	rawin	g of th	e orth	ograpł	nic proje	ctions	of		Ap	ply	
CO2.	sectioned solids and true shape of the sections.															
CO3.	Develop lateral surfaces of the solid section and cut section of solids. Apply															
CO4.	Draw the pictorial projections (isometric and perspective) of simple solids. Apply															
CO5.	Draw the pretorial projections (isometric and perspective) of simple solids. Apply Draw the orthographic views from the given pictorial view.															
Manning w	Mapping with Programme Outcomes and Programme Specific Outcomes															
mapping "	BY WITH Frogramme Outcomes and Frogramme Specific Outcomes															
CO	10	$\frac{10}{2}$	10	10	5	6	7	8	0		11	12	01		\mathbf{n}	PSO3
C01	1 8	<u>2</u> S	I	7	I	-	-	0	,	•	-	14	I		<i>]</i>	
	5 S	2	I	5	I	_	_	_		_	_		I		_	
CO2	5 S	2	I	5	I	_	_	_		_	_		I		_	
CO4	S	M	I	2	S	_	_	_		_	-	_	I		-	
C04	2 2	2	I	2	I	_	_			_	_		I		_	
S- Strong: 1	M-Mea	lium:	L-Lov	w	Ц								11			
Svllabus																
PLANE CI	IRVES	ANT	DIM	FNSI	ONIN	C										
Basic Geom	etrical	constr	uction			o ed in e	noinea	ring n	ractice	es: Conic	s - Cor	nstruc	tion	of el	lins	a
parabola and	d hyper	·bola ł	W ecce	entricit	v metl	hod $-$ (Constr	uction	of cvc	d = cc	nstruct	tion o	f inv	olute	es of	souare
and circle –	Drawi	ng of t	angen	ts and	norma	1 to the	e abov	e curve	es Dir	nensioni	ng Pro	iectio	n of	poin	nts	square
PROJECT	ION O	F SO				1 00 011						JUU ¹⁰		<u>p 0 11</u>		
Projection o	f simp	le soli	ds like	prism	s. pyra	mids.	cvlind	er and	cone	when the	axis is	incli	ned t	o an	v or	le
reference pl	ane by	chang	e of p	osition	metho	od.	• ງ		••••••							•
SECTION	OF SC	OLID	SAND	DEVE	ELOP	MENT	COF S	SURF	CES							
Sectioning of	of abov	e solic	ls in si	mple	vertica	1 posit	ion by	cuttin	g plan	es incline	ed to ar	iv one	e refe	erenc	e pl	ane and
perpendicula	ar to th	e othe	r – Ob	taining	g true s	shape of	of sect	ion.	01			5			I	
Developmen	nt of la	teral s	urfaces	s of sir	nple a	nd trur	ncated	solids	like Pı	risms, py	ramids	, cylii	nders	s and	l cor	nes.
ORTHOGI	RAPH	IC VI	EWS	AND I	SOM	ETRI	C VIE	WS –	First a	ngle proj	ection -	- lavo	out vi	iews	_	
Representat	ion of 7	Three	Dimen	sional	object	ts -mu	ltiple v	views f	rom p	ictorial v	iews of	f obje	cts.			
Principles of	f isome	etric V	iew –	isome	tric sca	ale – P	rincip	les of i	someti	ric projec	tion –	isome	etric	scale	e Als	ometric
projections	of simp	ole sol	ids and	l trunc	ated so	olids –	Prism	s, pyra	mids,	cylinder	s, cone	s.	it	1.	11	
1 J . ~	г			-				,1,	,			A	2			
INTRODU	CTIO	N TO	AUTO) CAI)						22			1119	h	
Introduction	n to Au	to CA	D- Bas	sic intr	oducti	on and	l opera	tional	instruc	ctions of	variou	Pcom	man	ds in	Au	toCAD.
Limit System	m- Tol	erance	, Limi	ts, Dev	viation	, Actu	al Dev	viation,	Uppe	r Deviati	on, Lo	wer [evia	tion	e &	Engs
Allowance.											Y.M.K	V. En	gg. C	olleg	e, Sal	em.

Preparation	of manual parts drawing	and assembled sect	ional views from orth	ographic part drawings,								
Text Books	5											
1	Natarajan K V, "Engine	ering Graphics", T	ata McGraw-Hill Pub	lishing Company Ltd. New Delhi.								
2	K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International Private Limited.											
3	K.R.Gopalakrishna"Engineering Drawing" (Vol. I & II), Subhas Publications, 2014.											
4	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand-											
-	India- 2003											
Reference	Books											
1	N.D. Bhat and V.M. Panchal, Engineering Graphics, Charotar Publishers 2013											
2	E. Finkelstein, "AutoCAD 2007 Bible", Wiley Publishing Inc., 2007											
3	R.K. Dhawan, "A text b	ook of Engineering	g Drawing", S. Chand	Publishers, Delhi,2010.								
4	DhananjayA.Jolhe, "En	gineering Drawing	with an Introduction	to AutoCAD", Tata McGraw Hill								
4	Publishing Company Li	mited, 2008.										
5	G.S. Phull and H.S.Sand	dhu, "Engineering (Graphics", Wiley Pub	olications, 2014.								
Course Des	signers											
			Department /									
S.No	Faculty Name	Designation	Name of the	Email id								
			College									
1	Dr. S. Venkatesan	Professor	Mech / VMKVEC	venkatesan@vmkvec.edu.in								
2	Dr. N.Rajan	Professor	Mech / VMKVEC	rajan@vmkvec.edu.in								

Alternative NPTEL/SWAYAM Course:

S. No.	NPTEL Course Name	Instructor	Host Institute	Duriation
1.	Engineering Graphics and Design	Prof. Naresh Varma Datla, Prof. S. R. Kale	IIT Delhi	12 weeks
2.	Engineering Drawing	Robi, P.S.	IIT Guwahati	12 weeks
3.	Engineering Drawing and Computer Graphics	Prof. Rajaram Lakkaraju	IIT Kharagpur	12 weeks

Mitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

35021E03	PROGRAMMING FOR PROBLEM SOLVING	Category	L	Т	Р	Credit
		FC-ES	3	0	0	3

PREAMBLE

The course is designed to introduce basic problem solving and program design skills that are used to create computer programs. It gives engineering students an introduction to programming and developing analytical skills to use in their subsequent course work and professional development. This course focuses on problem solving, algorithm development, top-down design, modular programming, debugging and testing using the programming constructs like flow-control, looping, iteration and recursion. It presents several techniques using computers to solve problems, including the use of program design strategies and tools, common algorithms used in computer program and elementary programming techniques.

PREREQUISITE-NIL

COURSEOBJECTIVES

coc															
1.	To gai	n ba	sic kı	nowled	ge aboi	ut simp	le algo	rithms	for arit	hmeti	c and logic	al prob	olems.		
2.	To lea	arn h	low to	o write	a progi	ram, sy	ntax ar	d logic	al error	rs.					
3.	3. To understand how to decompose a problem into functions and synthesize a complete program.														
COURSEOUTCOMES															
On the successful completion of the course, students will be able to															
CO1: Formulate simple algorithms for arithmetic and logical problems. Understand															
CO2	CO2: Test and execute the programs and correct syntax and logical errors Apply														
CO3	CO3: Implement conditional branching, iteration and recursion. Apply														
CO4: Decompose a problem into functions and synthesize a complete program. Analyze															
CO5 progr	Use ar	rays.	, poin	iters, st	rings a	nd strue	ctures t	o form	ulate al	gorith	ims and		Apply		
MAI	PPING	NIT	HPR	OGRA	MME	OUTC	COME	SANDI	PROG	RAM	MESPEC	IFICO	UTCOM	ES	
COS	PO1	P O 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO1	2 PSO1	PSO2	PSO3
C01	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	Μ	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	Μ	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	Μ	Μ	М	-	-	-	-	-	-	-	-	М	М	S
S-Str	ong; M-	-Mee	lium;	L-Lov	V										

Nitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

UNIT – I: INTRODUCTION

Computer system: components of a computer system-computing environments-computer languages, creating and running programs, Algorithms, flowcharts- Introduction to C language: basic structure of programs, process of compiling and running program, -tokens, keywords, identifiers, constants, strings, special symbols, variables, data types-I/O statements

UNIT - II: OPERATORS, EXPRESSIONS AND CONTROL STRUCTURES

Operators and expressions: Operators- arithmetic- relational and logical- assignment operators- increment and decrement operators,-bitwise and conditional operators-special operators- operator precedence and associativity-evaluation of expressions-type conversions in expressions- Control structures: Decision statements: if and switch statement- Loop control statements: while, for and do while loops- jump statements- break-continue-goto statements.

UNIT – III: ARRAYS AND FUNCTIONS

Arrays: One dimensional array-declaration and initialization of one dimensional arrays- two dimensional arraysinitialization and accessing- multidimensional arrays- Basic Algorithms: Searching- Basic Sorting Algorithms-Functions: User defined and built-in Functions- Parameter passing in functions-call by value-Passing arrays to functions-call by reference,-Recursion-Example programs, such as Finding Factorial, Fibonacci series

UNIT – IV: STRINGS AND POINTERS

Strings: Arrays of characters- variable length character strings-inputting character strings-character library functions-string handling functions- Pointers: Pointer basics- pointer arithmetic-pointers to pointers-generic pointers-array of

Pointers- functions returning pointers,-Dynamic memory allocation

UNIT – V: STRUCTURES AND FILE HANDLING

Structures and unions: Structure definition- initialization- accessing structures,-nested structures,-arrays of structures-structures and functions- unions- typedef- enumerations.-File handling :command line arguments- File modes- basic file operations read,-write and append

LIST OF EXPERIMENTS

1. Basic programs to understand different types of data, operators and expressions.

- 2. Programs using control structures
 - i) Factorial of a number
 - ii) Fibonacci series
 - iii) Generating prime numbers
- 3. Programs using one dimensional and two dimensional arrays
- 4. Programs using strings functions
- 5. Programs using functions
- 6. Programs using pointers
- 7. Programs using structures

ATT.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

TEXTBOOKS

1. Schaum's Outline of Programming with C by Byron Gottfried, McGraw-Hill, 2017

REFERENCES

- 1. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education, 2015.
- 2. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, Seventh Edition 2013.

Course Designers:												
S.No.	Name of the Faculty	Designation	Department / Name of the College	MailID								
1.	Mrs.R.Shobana	Assistant Professor	CSE / AVIT	shobana@avit.ac.in								
2.	Mr.B.Sundaramurthy	Associate Professor	CSE / VMKVEC	sundaramurthy@vmkvec.edu.in								

Mitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3502	1C02		DA	ATA ST	RUCT	URES			CATI	EGORY	L T P C					
										CC		3	0	0	3	
PREA This c structu	MBLE ourse ai ures	2 ims at u	ndersta	nding th	ne basic	concep	ts in pr	ogramm	ing stru	ictures, 1	linear st	ructures	and no	n linea	r	
PREF	RQUISI	TE – N	IL													
COU	COURSE OBJECTIVES															
1. To remember and understand the basic concepts in linear structures																
2.	2. To learn about tree structures.															
3.	To un	derstand	l about	balance	d trees											
4.	4. To learn about hashing and sets.															
5.	5. To learn and understand about graphs															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to																
CO1.	Remem	ber the	basic c	oncepts	in linea	r structu	ures				Unders	stand				
CO2 .	Learn a	bout tre	e struct	ures an	d tree tr	aversals					Apply					
CO3.	Unders	tand abo	out bala	nced tre	es						Apply					
CO4 .	Learn a	bout ha	shing a	nd sets.							Apply					
CO5.	Learn a	nd unde	erstand	about g	aphs						Apply					
MAP	PING V	VITH P	PROGE	RAMM	E OUT	COME	S AND	PROG	RAMN	1E SPE	CIFIC	OUTC	OMES			
cos	PO1	PO2	PO3	PO4	PO5	PO6	P O 7	PO8	PO9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3	
CO1	S	М	М	-	-	-	-	-	-	-	-	М	S	S	S	
CO2	S	М	М	М	М	-	-	-	-	-	-	М	S	S	S	
CO3	S	М	L	М	М	-	-	-	-	-	-	М	S	S	М	
CO4	S	М	М	М	М	-	-	-	-	-	-	L	S	S	М	
CO5	S	Μ	L	М	М	-	-	-	-	-	-	М	S	S	М	
S- Stro	ong; M-	Mediur	n; L-Lo	W												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.
Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm, Asymptotic Notations, Time-Space trade off. Searching: Linear Search and Binary Search Techniques and their complexity analysis.

Linear Structures

Abstract Data Types (ADT) – List ADT – array-based implementation – linked list implementation – cursor-based linked lists – doubly-linked lists – applications of lists –Stack ADT – Queue ADT – circular queue implementation – Applications of stacks and queues.

Tree Structures

 $Tree \ ADT - tree \ traversals - Balanced \ Trees: AVL \ Trees - Splay \ Trees - B-Tree \ - \ heaps - \ binary \ heaps - \ applications \ of \ binary \ Heaps.$

Hashing and Set

Hashing – Separate chaining – open addressing – rehashing – extendible hashing -Disjoint Set ADT – dynamic equivalence problem – smart union algorithms – path compression – applications of Set.

Graphs

Definitions – Topological sort – breadth-first traversal - shortest-path algorithms –minimum spanning tree – Prim's and Kruskal's algorithms – Depth-first traversal – bi-connectivity – Euler circuits – applications of graphs.

TEXT BOOKS:

1. 1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C (2nd Edition), Pearson Education, 2002

REFERENCES:

 A. V. Aho, J. E. Hopcroft, and J. D. Ullman, "Data Structures and Algorithms", Pearson Education, First EditionReprint. R. F. Gilberg, B. A. Forouzan, "Data Structures", Second Edition, Thomson India, Edition, 2005.

COUR	SE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. R. Jaichandran	Associate Professor	CSE / AVIT	jaichandran@avit.ac.in
2.	Dr.V.Amirthalingam	Associate Professor	CSE / VMKVEC	amirthalingam@vmkvec.edu. n

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	1C18			OP	ERAT	ING	SYST	EMS		C	ategor	y L	T P Credit					
	1010			(THEC	DRY A	ND P	RACT	ICALS	5)		CC	3	0	2		4		
PREAMB The studer communic	LE at will be ation, th	e able reads,	to und disk n	erstand	d the c ment a	oncept and file	ts of op e syste	peratin ems.	g syste	em, scl	hedulir	ng algorith	nms, Ii	nter p	oroce	SS		
PREREQ	UISITE	:NIL																
COURSE	OBJE	CTIVE	ES															
1.	To be aware of the evolution of operating systems, process scheduling, CPU utilization and scheduling algorithms																	
2.	To learn what processes are, how processes communicate, how process synchronization is doneand how to manage processes.																	
3.	To have an understanding of the memory management techniques.																	
4.	To lea	rn and	under	stand t	he dis	k mana	ageme	nt syst	ems									
5.	To lea	rn and	unde	rstand	the file	e mana	igemei	nt syste	ems									
COURSE	COURSE OUTCOMES																	
On the successful completion of the course, students will be able to																		
CO1 . Dev utilization.	elop alg Throug	orithm hput, '	s for p Turnar	orocess ound 1	sched Гime, V	uling t Waitin	for a g g Time	iven sp e, and l	becifica Respon	ation o nse Ti	of CPU me.		App	ly				
CO2. Proc environme	ess sync nt.	chroniz	zation	concep	ots for	the giv	/ensce	nario i	n opera	ating s	ystems		Und	erstar	nd			
CO3. Able increasing	e to deve memory	elop th 7 utiliz	e techi ation a	niques and for	for op impro	timally oving t	y alloc he acc	ating r ess tim	nemor ne.	y to pi	rocesse	s by	App	ly				
CO4.Appl	y the I/C) Subs	ystem	conce	pts for	a give	en scen	ario.					App	ly				
CO5. Desi	ign and i	mplen	nent fi	le man	ageme	ent syst	tem.						App	ly				
MAPPIN	G WITH	H PRC	OGRA	MME	OUT	COM	ES AN	D PR	OGRA	MMI	E SPE	CIFIC O	UTCO)ME	S			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PS	02	PSO3		
CO1	S	S	М	М	-	-	-	-	-	-	-	-	S	5	5	-		
CO2	S	S	-	М	-	-	-	-	-	-	-	-	S	N	Л	-		
CO3	S	S	-	М	-	-	-	-	-	-	-	-	S	N	Л	-		
CO4	S	М	L	М	-	-	-	-	-	-	-	-	S	Ι		М		
CO5	S	М	L	L	-	-	-	-	-	-		MM	S	N	Л	-		
S- Strong;	M-Med	ium; L	-Low							(M)1	•					

INTRODUCTION

Introduction: Concept of Operating Systems, Types of Operating Systems, Concept of Virtual Machine, Different states of a Process, Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads, Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling, criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms: Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

INTER PROCESS COMMUNICATION

Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Strict Alternation, Peterson's Solution, The Producer\Consumer Problem, Semaphores, Event Counters, Monitors, Message Passing,

Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem etc. Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery..

MEMORY MANAGEMENT

Logical and Physical address map, Memory allocation, Paging, Page allocation – Hardware support for paging, Protection and sharing, Disadvantages of paging. Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

DISK MANAGEMENT

Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks. I/O Hardware: I/O devices, Device controllers, Direct memory access Principles of I/O.Secondary-Storage Structure: Disk structure, Disk scheduling algorithms.

FILE MANAGEMENT

Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and performance.

LIST OF PRACTICALS

- 1. Basics of UNIX commands.
- 2. Shell programming
- 3. Implementation of CPU scheduling. a) Round Robin b) SJF c) FCFS d) Priority
- 4. Implement all file allocation strategies
- 5. Implement Semaphores
- 6. Implement File Organization Techniques
- 7. Implement Bankers algorithm for Dead Lock Avoidance
- 8. Implement an Algorithm for Dead Lock Detection
- 9. Implement the all page replacement algorithms a) FIFO b) LRU c) LFU
- 10. Implement Shared memory and IPC

Nitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

TEXT BOOKS:

1. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 10th Edition, Wiley India Pvt. Ltd, 2018..

References

- 1) Operating Systems: Internals and Design Principles, 5th Edition, William Stallings, Prentice Hall of India.
- 2) Operating System: A Design-oriented Approach, 1st Edition by Charles Crowley, Irwin Publishing
- 3) Operating Systems: A Modern Perspective, 2nd Edition by Gary J. Nutt, Addison-Wesley
- 4) Design of the Unix Operating Systems, 8th Edition by Maurice Bach, Prentice-Hall of India
- 5) Understanding the Linux Kernel, 3rd Edition, Daniel P. Bovet, Marco Cesati, O'Reilly and Associates.

COUI	COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID							
1.	Dr.R.Jaichandran	Professor	CSE / AVIT	rjaichandran@avit.ac.in							
2.	B.Sundaramurthy	Associate Professor	CSE / VMKVEC	sundaramurthy@vmkvec.edu.in							

N. Hitt

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

			DESI	CN AN	D A N A	LVSIS	OF		Categ	gory	L	T P Credit				
3502	1C05		DEDI	ALG	ORITH	MS			C	С	3	0 0 3				
PREAM This sub be able i) ii) iii) iii) PRERH COURS 1. 2.	 PREAMBLE: This subject introduces students the concepts of design and analysis of algorithms. On completion of this course students will be able to: Learn the algorithm analysis techniques. Become familiar with the different algorithm design techniques Construct efficient algorithms for solving engineering 35021C04problems by using appropriate algorithm design paradigms anddata structures. PREREQUISITE: NIL COURSE OBJECTIVES To familiarize the student with good programming design methods, particularly Top- Down design. To develop algorithms for manipulating stacks, queues, linked lists, trees, graphs To arrate the data structures for implementing the above elegrithms. 															
3.	To crea	ate the	data str	uctures	for imp	lementi	ng the	above a	lgorithr	ns						
4.	To construct the recursive algorithms as they apply to trees and graphs															
5. COUR	5. To familiarize the student with the issues of Time complexity and examine various algorithms from this perspective COURSE OUTCOMES															
On the s	On the successful completion of the course, students will be able to															
CO1. A	CO1. Analyse the correctness of algorithms using induction and loop invariants. Analyze															
CO2. A using as	CO2. Analyse the worst-case, best-case and average-case running time of algorithms Analyze															
CO3. A techniq	nalyse thues like	ne perfo potentia	ormance al methe	e of a se od and a	equence account	of ope	rations hod.	using a	mortize	d analysi	s A	Analyze				
CO4. C dynami	onstruct	algorit mming	hms usi for a gi	ng desi	gn para blem.	digms l	ike div	ide and	conque	r, greedy	and A	Analyze				
CO5. In design t	fer when	n a desi ns.	gn scer	nario reo	quires th	he appli	cation	of the d	ifferent	algorithr	n A	Apply				
CO6. A data stru	nalyse h uctures t	ow the he algo	perforr rithm u	nance o ses.	f an alg	orithm	is affec	ted bas	ed on th	ne choice	of A	Analyze				
MAPP	ING WI	TH PR	ROGRA	MME	OUTC	OMES	AND	PROGI	RAMM	E SPEC	IFIC OU	JTCON	/IES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	S	M	M	-	-	-	-	-	-	-	-	-	S	M	M	
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	S	М	
CO3	М	М	S	-	-	-	-	-	-	-	-	-	S	М	М	
CO4	S	М	-	-	-	-	-	-	-	-	-	-	S	S	М	
CO5	М	М	М	-	-	-	-	-	-	-	-	it	1.18	М	S	
CO6	М	М	М	-	-	-	-	-	-	-	- 0	M	S	М	М	

SYLLABUS INTRODUCTION TO ALGORITHMS

The role of algorithms in computing, Growth of functions, Asymptotic notations, Designing and Analyzing algorithms-an Introduction using insertion sort. Review on the Math needed for algorithm design and analysis.

DIVIDE AND CONQUER

Solving recurrences – The Substitution method, Recurrence Tree method and Master's method, Multiplying large integers, Binary Search, Sorting [Merge Sort and Quick Sort], Selection in linear time [Expected and Worst-case], Strassen's algorithm for Matrix Multiplication, The maximum sub-array problem.

GREEDY ALGORITHMS

Characteristics of Greedy algorithms, The problem of making change, Greedy algorithms for Scheduling, Minimum Spanning Trees – Kruskal's Algorithm and Prim's Algorithm, Greedy Algorithms for finding the shortest paths in a Graph, The Knapsack problem Amortized Analysis: The accounting method, The potential method.

DYNAMIC PROGRAMMING

Calculating the binomial co-efficient, The problem of making change, The Knapsack problem, Chained matrix multiplication, Finding the shortest paths in a Graph, Reformulating Dynamic programming algorithms using recursion and memory functions.

GRAPH ALGORITHMS

Depth-first search & Breadth-First Search, Flow Networks, Topological sort, Strongly connected components Computational Complexity: Classes P and NP, Polynomial reductions, Classes NP-Complete and NP-Hard. Heuristics: Graph Coloring problem, Travelling Sales Person problem.

TEXT BOOKS:

1. Charles E. Leiserson, "Thomas H. Cormen, Ronald L. Rivest, Clifford Stein – Introduction to Algorithms", Third edition, PHI, 2010

REFERENCES:

- 1. Gilles Brassard and Paul Bratley, "Fundamentals of Algorithmic", PHI, 2000.
- 2. Sara Baase Computer algorithms: Introduction to Design and Analysis –, Addison Wesley publication, 1998.

COURS	COURSE DESIGNERS										
S. No.	Name of the faculty	Designation	Department /	Email Id							
	•		Name of the								
			College								
1.	Dr. S. Rajaprakash	Assistant Professor Gr. II	CSE / AVIT	srajaprakash@avit.ac.in							
2.	Mr. M. Annamalai	Assistant Professor	CSE / VMKVEC	annamalaim@vmkvec.edu.in							

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3502	1C04	DAT	ABASI	E MAN	AGEM	IENT S	SYSTE	MS	Cate	gory	L	Т	Р	Cr	edit
									С	С	3	0	0		3
PREAM This co Manages effective environn	This course aims at facilitating the student to understand the various concepts and functionalities of Database Management Systems, the method and model to store data and how to manipulate them through query languages, the effective designing of relational database and how the system manages the concurrent usage of data in multi user environment.														
PRERE	QUISIT	E: NII	4												
	SE OBJE	ECTIV	ES												
1	Describe a relational database and object-oriented database.														
2	Create, maintain and manipulate a relational database using SQL.														
3	Descrit	be ER r	nodel a	nd norn	nalizatio	on for d	atabase	e design	l.						
4	Examin	ne issue	es in dat	a storag	ge and c	juery pi	ocessir	ng and o	can forn	nulate ap	propriat	e solutio	ons.		
5	Design and build database system for a given real world problem.														
COURSE OUTCOMES															
On the successful completion of the course, students will be able to															
CO1. III	O1 . Illustrate the database design for applications and database administrators. Understand														
and relat	CO2 . Build and manipulate the relational database using Structured Query Language Apply														
CO3. D	evelop a	normal	ized da	tabase	for a giv	ven app	lication	by inc	orporati	ing vario	us	Apply			
constrain	nts like in	ntegrity	and va	lue con	straints	maaban	iom for	databa	aa maahi	lama					
CO4. A	onstruct	data str	uctures	like ind	lexes at	nd hash	tables f	for the t	se prob fast retr	ieval of d	lata	Apply Apply			
	MAPP	ING W	ITH P	ROGR	AMMI	EOUT	COME	S AND	PROG	RAMM	E SPE	CIFIC C	OUTCO	OMES	
~~~~												<b>PO1</b>	PS	PS	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	2	01	02	PSO3
CO1	S	М	М	М	М	-	-	-	-	-	М	S	S	М	S
CO2	М	М	М	L	М	-	-	-	-	-	М	М	S	М	S
CO3	М	М	S	М	М	-	-	-	-	-	М	L	S	М	S
CO4	S	М	М	М	L	-	-	-	-	-	М	М	S	S	S
CO5	S	М	М	М	М	-	-	-	-	-	М	М	S	М	S
S-Stron	g; M-Me	dium;	L-Low							·		·			•

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### SYLLABUS INTRODUCTION

Database-System Applications - Purpose of Database Systems - View of Data - Database Languages - Database Design - Database Engine - Database and Application Architecture - Database Users and Administrators - History of Database Systems

#### **RELATIONAL APPROACH**

The relational Model - Additional & Extended Relational - Types of Keys - Relational Algebra - Null Values - Domain Relational Calculus - Tuple Relational Calculus - Fundamental operations - Additional Operations- SQL fundamentals -Structure of SQL Queries - SQL Data Types and Schemas - Nested Sub queries - Complex Queries - Integrity Constraints - Triggers - Security - Advanced SQL Features - Embedded SQL- Dynamic SQL- Views - Introduction to Distributed Databases and Client/Server Databases..

#### **RELATIONAL DATABASE DESIGN**

Overview of the Design Process - Functional Dependencies - Non-loss Decomposition - Functional Dependencies - Normalization and its Types - Dependency Preservation - Boyce/Codd Normal Form- Decomposition Using Multi-valued Dependencies and Form Hormal Form - Join Dependencies and Fifth Normal Form - Entity Sets and its Types.

#### TRANSACTION & CONCURRENCY CONTROL

Transaction Concepts - Transaction State - Transaction Recovery - ACID Properties - System Recovery - Media Recovery - Two Phase Commit - SQL Facilities for recovery -Advanced Recovery Techniques - Buffer Management - Remote Backup Systems - Concurrency Control - Need for Concurrency - Locking Protocols -Two Phase Locking - Internet Locking - Deadlock Handling - Serializability - Recovery Isolation Levels - SQL Facilities for Concurrency.

#### STORAGE STRUCTURE

Introduction to Storage and File Structure - Overview of Physical Storage Media - Magnetic Disks - RAID - Tertiary storage - File Organization - Organization of Records in Files - Indexing and Hashing - Ordered Indices - B+ tree Index Files - B- tree Index Files - Bitmap Indices - Static Hashing - Dynamic Hashing -Query Processing - Catalogue Information for Cost Estimation – Selection Operation - Sorting - Join Operation - Query optimization - Database Data Analysis.

#### **TEXT BOOKS:**

1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Seventh Edition, McGraw-Hill Education; 6 edition, 2019).

#### **REFERENCES:**

- 1. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Pearson India; 7th edition, 2017, 2017).
- 2. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 3. Carlos Coronel, Steven Morris, "Database Systems Design, Implementation and Management, 13th Edition, Cengage Learning; 13th edition, 2018).

COURSE DESIGNERS										
S. No.	Name of the faculty	Designation	Department /	Mail Id						
			Name of the							
			College							
1	Mr. S. SenthilKumar	Assistant Professor	CSE /	senthilkumar@vmkvec.edu.in						
			VMKVEC							
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE / AVIT	muthuselvan@avit.ac.in						

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

CC       3       0       2       4         PREAMBLE         The purpose of this course is to understand the concepts of data communication and computer networks. Identify the components required to build different types of networks. Choose the required functionality at each layer for given application. Identify the solution for every functionality and layers. Trace the flow of information from one node to another node in the network.         PREREQUISITE       NIL         COURSE OBJECTIVES         1       To provide basic knowledge in networking concepts.         2       To introduce and demonstrate various bridges, switches and Ethernets.         3       To introduce different methodologies in routing.         4       To learn about transmission protocols and QOS.         5       To provide knowledge about different application protocols.	
PREAMBLE         The purpose of this course is to understand the concepts of data communication and computer networks. Identify the components required to build different types of networks. Choose the required functionality at each layer for given application. Identify the solution for every functionality and layers. Trace the flow of information from one node to another node in the network.         PREREQUISITE         NIL         COURSE OBJECTIVES         1       To provide basic knowledge in networking concepts.         2       To introduce and demonstrate various bridges, switches and Ethernets.         3       To introduce different methodologies in routing.         4       To learn about transmission protocols and QOS.         5       To provide knowledge about different application protocols.         COURSE OUTCOMES	
COURSE OBJECTIVES         1       To provide basic knowledge in networking concepts.         2       To introduce and demonstrate various bridges, switches and Ethernets.         3       To introduce different methodologies in routing.         4       To learn about transmission protocols and QOS.         5       To provide knowledge about different application protocols.         COURSE OUTCOMES	
<ol> <li>To provide basic knowledge in networking concepts.</li> <li>To introduce and demonstrate various bridges, switches and Ethernets.</li> <li>To introduce different methodologies in routing.</li> <li>To learn about transmission protocols and QOS.</li> <li>To provide knowledge about different application protocols.</li> </ol> COURSE OUTCOMES	
<ul> <li>2 To introduce and demonstrate various bridges, switches and Ethernets.</li> <li>3 To introduce different methodologies in routing.</li> <li>4 To learn about transmission protocols and QOS.</li> <li>5 To provide knowledge about different application protocols.</li> <li>COURSE OUTCOMES</li> </ul>	
3       To introduce different methodologies in routing.         4       To learn about transmission protocols and QOS.         5       To provide knowledge about different application protocols.         COURSE OUTCOMES	
<ul> <li>4 To learn about transmission protocols and QOS.</li> <li>5 To provide knowledge about different application protocols.</li> <li>COURSE OUTCOMES</li> </ul>	
5       To provide knowledge about different application protocols.         COURSE OUTCOMES	
COURSE OUTCOMES	
On successful completion of the course, students will be able to	
CO1.Learn the fundamentals of networks and different types of OSI Layers. Remember and Understand	
<b>CO2</b> .Learn the different Ethernet, wireless networks, switching and bridging concepts	
<b>CO3</b> .Design solutions for complex routing methods and different multicast routing techniques. Understand, Apply, analyse and evaluate	
CO4.Learn the concepts of different protocols for transmission purpose and study the quality of service for TCP protocol.	
CO5.Learn different types of application protocols and Apply	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES	
COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PS01         PS02	PSO3
CO1 S M L S M	-
CO2 S M L M S	-
CO3         S         S         S         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	_
CO4         S         S         S         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

### FUNDAMENTALS & LINK LAYER

Building a network – Requirements - Layering and protocols - Internet Architecture – Network software – Performance ; Link layer Services - Framing - Error Detection - Flow control.

#### DATA-LINK LAYER & MEDIA ACCESS

Introduction – Link-Layer Addressing – DLC Services – Data-Link Layer Protocols – HDLC – PPP – Media Access Control – Wired LANs: Ethernet – Wireless LANs – Introduction – IEEE 802.11, Bluetooth –

# Connecting Devices. **NETWORK LAYER**

Network Layer Services – Packet switching – Performance – IPV4 Addresses – Forwarding of IP Packets – Network Layer Protocols: IP, ICMP v4 – Unicast Routing Algorithms – Protocols – Multicasting Basics – IPV6 Addressing – IPV6 Protocol.

#### TRANSPORT LAYER

#### **APPLICATION LAYER**

Traditional applications -Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS – SNMP.

#### LIST OF EXPERIMENTS.

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands
- 5. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS.
- 6. Simple Tcp/Ip Client Server Communication
- 7. UDP Echo Client Server Communication
- 8. Half Duplex Chat Using TCP/IP
- 9. Full Duplex Chat Using TCP/IP
- 10. Simulation of Distance Vector/ Link State Routing algorithm.
- 11. Performance evaluation of Routing protocols using Simulation tool.
- 12. Simulation of error correction code (like CRC).

#### **TEXT BOOKS:**

- 1. Behrouz A. Foruzan, "Data communication and Networking", Seventh Edition, Tata McGraw-Hill, 2017.
- 2. Andrew S. Tannenbaum, David J. Wetherall "Computer Networks", Pearson Education, Eighth Edition, 2016.

#### **REFERENCES:**

- 1. William Stallings, "Data and Computer Communication", Eighth Edition, Pearson Education.
- 2. Knuth, D.E., "Computer Communication and Networks", Sixth Edition, McGrath-Hill, 2016.

COURDE											
S. No.	Name of the faculty	Designation	Department /	Mail Id							
			Name of the								
			College								
1	Mr. S. SonthilVumor	Aggistant Professor	CSE /	senthilkumars@vmkvec.e							
	WIT. S. SenumKumar	Assistant Floressol	VMKVEC	du.in							
2	Mr. S. Muthuselvan	Assistant Professor Gr. II	CSE / AVIT	muthuselvan@avit.ac.in							
	•										

		Category	L	Т	Р	Credit
35021C13	SOFTWARE ENGINEERING	СС	3	0	0	3

### **PREAMBLE:**

This course aims at introducing to the students about the product that is to be engineered and the process that provides a framework for the engineering technology. The course facilitates the students to analyze risk in software design and quality and to plan, design, develop and validate the software project.

# PREREQUISITE:

NIL

# COURSE OBJECTIVES

COUR	
1	To be aware of generic models to structure the software development process.
2	To understand fundamental concepts of requirements engineering and requirements
	specification.
3	To understand different notion of complexity at both the module and system level.
4	To be aware of some widely known design methods.
5	To understand the role and contents of testing activities in different life cycle phases.

# COURSE OUTCOMES

On the successful completion of the course, students will be able to							
CO1. Explain a process model for a software project Development.	Understand						
CO2. Prepare the SRS, Life Cycle Models.	Apply						
CO3. Apply Design document, Project plan of a given software system,	Understand						
Project Management and Requirement analysis, Principles to S/W project							
development.							
CO4. Analyze the cost estimate and problem complexity using various	Understand						
estimation techniques.							
CO5. Generate test cases using the techniques involved in selecting: (a)	Apply						
White Box testing (b) Block Box testing.							
CO6. Explain the advantages of Design Process, configuration	Analyze						
management and risk management activities							

# MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	Ī
CO2	S	S	М	-	-	М	М	L	-		-	-	S	L	Ī
CO3	S	S	М	L	-	М	М	L	ti	71-1	) L	-	S	L	Ī
CO4	S	S	М	L	L	L	М	M	M	М	L	L	S	S	Ī
CO5	S	S	М	М	М	L	М	М	Dr. M. I	AYATIN	М	М	S	S	Ī
CO6	S	S	L	-	-	L	М	L	Pro	f & Head.	E Enge	L	S	L	Ī
S- Stror	S- Strong; M-Medium; L-Low Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.														

### SOFTWARE

Introduction – The Evolving Role of Software– Software Characteristics– Software Applications– Software Engineering: A Layered Technology–S/W Engineering paradigm -SDLC– Software Process. LIFE CYCLE MODELS

Linear Sequential Model- Prototyping Model-RAD Model-Evolutionary Software Process Models-Component Based Development - Project Planning Objectives – Software Scope – Resources – Software Project Estimation – Empirical Estimation Models – Make/Buy Decision-Functional and Non Functional requirements –software requirement specification (SRS) – Requirement Engineering process-Feasibility studies.

### ANALYSIS MODELING AND DESIGN CONCEPTS

Data Modeling – Data Flow Diagrams – Behavioral Modeling – The Mechanics of Structured Analysis – The Data Dictionary – Software Design and Software Engineering – The Design Process – Design Principles – Design Concepts – Effective Modular Design – Design Heuristics for effective Modularity – The Design Model – Design Documentation.

### **REQUIREMENT ENGINEERING TASKS**

Requirements Management, Structured coding Techniques-Coding Styles-Standards and Guidelines-Software testing Fundamentals-Types of testing - Quality Concepts – Quality Movement - Software Quality Assurance – Software Reviews — Formal Approaches to SQA - Software Reliability – ISO 9000 Quality Standards – SQA Plan.

### SOFTWARE CONFIGURATION MANAGEMENT

Introduction about software configuration management – the SCM process –identification of objects in the software configuration – version control – change control – configuration audit – status reporting – SCM standards –software Documentation-seven rules for sound documentation.

#### **TEXT BOOKS:**

- 1. Roger S. Pressman, "Software Engineering A practitioner's Approach", Seventh Edition, McGraw- Hill International Edition, 2010.
- 2. Ian sommerville," Software Engineering ", Seventh Edition, Pearson Education Asia, 2017.
- 3. Mary Shaw, David Garlan,"Software Architecture- a perspectives on an Emerging Discipline **REFERENCES:** 
  - 1. WattsS.Humphrey,"A Discipline for Software Engineering", Pearson Education, 2007.
  - 2. James F.Peters and WitoldPedrycz,"Software Engineering, An Engineering Approach", Riley-India, 2007

COURD	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Depart	Email Id									
			ment										
1	Mr. B. Sundaramurthy	Associate Professor	CSE	sundaramuthy@vmkvec.edu.									
2	Dr. R. Bharanidharan	Assistant Professor	CSE	bharanidharan@vmkvec.edu. in									

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35021C12		Category	L	Т	Р	Credit
	ARTIFICIAL INTELLIGENCE	CC	3	0	0	3

## PREAMBLE

This syllabus is intended for the Engineering students and enable them to lean about Artificial Intelligence. This syllabus contains intelligent agent, Knowledge Representation and Machine learning, and application. Which is useful to how represent knowledge and in machine learning contain some important prediction method. Thus, this syllabus focuses on to know about AI and its concepts, application.

### PREREQUISITE NIL

COURS	SE OBJECTIVES
1.	To identify the kind of problems that can be solved using AI technique: to know the relation between AI and other areas of computer science.
2.	To have knowledge of generic problem-solving methods in AI
3.	TO Design software agents to solve a problem.
4.	Apply the knowledge of algorithms to solve arithmetic problems.
5.	Assemble an efficient code for engineering problems.
COURS	SEQUITCOMES

#### SE OUTCOMES

On the successful completion of the course, students will be able to	
<b>CO1:</b> Identify the different agent and its types to solve the problems	Understand
CO2: know about the problem solving technique in Artificial Intelligence.	Apply
<b>CO3:</b> Construct the normal form and represent the knowledge.	Apply
<b>CO4</b> : to know about extension of condition probability and how to apply in the real time environment.	Apply

CO5:to lean about Information Retrieval and Speech Recognition

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO12	PSO1	PSO2	PSO3
CO1	Μ	Μ	М	-	L	-	-	-	-	L	L	L	-	-
CO2	Μ	Μ	L	L	L	-	-	-	-	Μ	L	-	L	S
CO3	М	М	L	L	-	М	-	-	-	L	M.H.	-	М	-
CO4	Μ	S	L	-	-	L	-	-	-	K	У M	Μ	-	М
CO5	М	L	-	-	-	М	-	-	-	M	L	S	-	-
S- Stron	σ· M_M	ledium.	I J OW				•	•		Dr. M.	NITHYA,	•	•	

Strong; M-Medium; L-Low

Understand

Dept. of Computer Science & Engg

V.M.K.V. Engg. College, Salem.

Prof & Head.

#### UNIT - I INTRODUCTION

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents- simplex reflex agent, model based agent, utilized based agent, learning agent, agent environments.

### UNIT - II PROBLEM SOLVING

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed Search Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

### UNIT - III KNOWLEDGE REPRESENTATION

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

### UNIT - IV MACHINE LEARNING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks-Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

### UNIT - V APPLICATION

AI Applications-Language Models-Information Retrieval-Information Extraction-Natural Language Processing-Machine Translation-Speech Recognition

#### **TEXT BOOKS**

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Fourth Edition, Pearson Education, 2020 2. Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2012..

#### REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel, "Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Sixth Edition, Pearson Education, 2009.

3. J. NILsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 2011.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
1.	Dr.S.Rajaprakash	Associate professor	CSE / AVIT	rajaprakash@avit.ac.in.		
2	Dr.M.Nithya	Professor	CSE / VMKVEC	nithya@vmkv.ac.in		

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K. V. Engg. College, Salem.

35921C01     OBJECT ORIENTED PROGRAMMING (THEORY AND PRACTICALS)     Category     L     T     P     Credit											
(THEORY AND PRACTICALS) CC 2 0 2 4											
PREAMBLE											
This syllabus is intended for the Computer science students and enables them to learn Object Oriented Programming and											
the design of computer solutions in a precise manner. The syllabus emphasizes on OOP concepts, Function	ns.										
Polymorphism. Inheritance and I/O. The intention is to provide sufficient depth in these topics to enable candidates	to										
apply Object Oriented Programming approach to programming. The modules in the syllabus reflect solving general											
problems via programming solution. Thus, modules collectively focus on programming concepts, strategies and											
techniques; and the application of these toward the development of programming solutions.											
PREREQUISITE – NIL											
COURSE OBJECTIVES											
1. To learn about the syntax and semantics of C++ programming language											
2. To learn about the concepts of object oriented programming.											
<b>3.</b> To determine how to reuse the code, Constructors and member functions											
4. To Analyse how to reduce the coding by applying overloading concepts											
5. To Analyse how to reuse the code, how to verify and validate the coding											
COURSE OUTCOMES											
On the successful completion of the course, students will be able to											
CO1. Explain fundamental programming concepts such as variables, conditional statements, Apply											
looping constructs											
CO2 Apply derived data types and methods (procedures), inline function, friend function in Apply											
applications											
CO3. Develop object-oriented programs for a given application using the concepts of Analyze											
compile-time and run-time polymorphism											
CO4. Apply operator overloading and inheritance in solving real time problems Analyze											
CO5. Construct object-oriented applications for a given scenario using files, Sting Analyze											
handling and to handle exceptions											
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES											
COS DOI DOI DOI DOI DOI DOI DOI DOI POI POI POI PS PSO											
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         0         1         2         O1         2         PS0	)3										
CO1 M M M M A M I M M M	ſ										
$\overline{\text{CO2}}$ M M M M M M M L M M M M	<u> </u>										
CO3         M         M         S         M         S         -         -         -         M         L         S         M         M	<u> </u>										
CO4         S         M         M         S         -         -         -         -         M         L         S         M         S											
CO5 S M M M M M L M M S	,										
S- Strong; M-Medium; L-Low											

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

#### INTRODUCTION TO OOPS AND C++

Introduction to Object Oriented Programming and C++: Object oriented concepts and its characteristics -History of C++ - Applications of C++ - Structure of C++ - Tokens - Keywords - Identifiers - Basic datatypes- Input and output statements-C++ Operators and control statements.

#### DERIVEDDATATYPESANDFUNCTIONS

Derived data types: Arrays – Structures - Unions - Type casting - Symbolic constants - Scope resolution operator-Functions: Function Prototyping- Function components- Passing parameters– Call by value-Call by reference- Inline function- Default arguments- Overloaded function-Introduction to friend function.

#### CLASSESANDOBJECTS

Classes and Objects: Classspecification-Memberfunctiondefinition-Accessqualifiers-Instancecreation -Staticdatamembersandmemberfunctions-Arrayofobjects-Objectsasarguments-Returningobjects-Constructors-ParameterizedConstructors-OverloadedConstructors-Constructorswithdefaultarguments -Copy constructors- Destructors.

#### **OPERATOROVERLOADINGANDINHERITANCE**

OperatorOverloading-Operatorfunction–Overloadingunaryandbinaryoperator–InheritanceIntroduction– TypesofInheritance-Constructorsinderivedclass-Abstractclasses-RuntimePolymorphism–Virtualfunctions- Pure virtual functions–Templates - Function templates- class templates.

#### STREAMS, FILESANDEXCEPTIONHANDLING

Streams: Streams in C++-Streamclasses-Formattedandunformatteddata–Manipulators-Filestreams-File pointer and manipulation-File open and close-Sequential and random access-Name Space.

Exception Handling: Principle of exception handling-Exception handling mechanism-Multiplecatchstatements-Nested try statements.

#### List of Experiments

#### **TEXT BOOKS:**

- 1. Robert Lafore, "Object-Oriented Programming in C++" Pearson Education, 4 Edition, 2009.
- 2. K R Venugopal, RajkumarBuyya "Mastering C++" Tata McGraw Hill, New Delhi, Second edition 2015.
- 3. B. Trivedi, "Programming with ANSI C++", Oxford University Press, 2013.
- 4. Bjarne stroustrup, The C++ programming Language, Addison Wesley, 4rd edition2018.
- 5. Harvey M. Deitel and Paul J. Deitel, C++ How to Program, 7th edition, Prentice Hall, 2010.
- 6. Tony Gaddis, Starting Out with Java: From Control Structures through Objects, 4/E, Addison-Wesley, 2009

S.N o	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.P.Sasikala	Professor, Mathematics	VMKVEC	sasikala@vmkvec.edu.in
2.	Dr.L.Tamilselvi	Professor, Mathematics	AVIT	ltamilselvi@avit.ac/.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350	01007				J	AVA F	PROGE	RAMM	ING		Category	L	Т	Р	(	Credit
337	/21007				(THI	EORY	AND P	PRACT	TCALS	<b>S</b> )	CC	3	0	2	4	4
PREA This c program hands-	<b>PREAMBLE</b> This course of study builds on the skills gained by students in Java Fundamentals and helps to advance Java programming skills. Students will design object-oriented applications with Java and will create Java programs using hands-on, activities.															
PREREQUISITE NIL																
COUR	COURSEOBJECTIVES															
1	1 Understand fundamentals of programming such as variables, conditional and iterative execution, methods, etc.															
2	Understand fundamentals of object-oriented programming in Java, including defining classes ,invoking methods ,Using class libraries, etc.															
3	Be aware of the important topics and principles of software development.															
4	Understand Event Handling and Swing Components.															
5	5 Understand Generic Programming.															
COUR	SEOU	TCON	1ES													
On suc	cessful	compl	etion of	the cou	ırse ,stı	idents v	will be	able to								
CO1.Kn	owledg	eofthes	structur	eandmo	odelofth	neJavap	rogram	mingla	nguage	•	]	Knowled	ge			
CO2.Us	etheJava	aprogr	amming	glangua	geforva	riouspi	rogram	mingtee	chnolog	gies		Understa	nd			
CO3.De	velopso	ftware	intheJa	vaprogr	ammin	glangu	age					Apply				
CO4.Eva Java pro	aluateus grammi	serrequing lan	irement guage c	sforsof an mee	twarefu t user r	nctiona equirer	alityreq nents	uiredto	decidev	vhether	the	Analyse				
CO5.Ch knowled	ooseane lge of pi	enginee rogram	eringapp ming a	proacht nd knov	osolvin wledge	gproble of oper	ems,Sta ating s	rting fr ystems.	om the	acquire	ed	Evaluatio	on			
MAPP	INGW	ITHP	ROGR	AMME	EOUTO	COME	SANDI	PROGI	RAMM	IESPE	CIFICOU	TCOMI	ES			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO1	PS	02	PSO3
CO1	S	_	-	S	S	М	S	-	-	-	S	S	-		-	-
CO2	S	-	S	-	S	-	-	S	L	L	-	L	-		-	-
CO3	S	-	М	L	S	М	-	-	-	-	L	L	-		-	-
CO4	S	-	S	М	S	-	S	-	-	-	S	Μ	-		-	-
CO5	S	-	S	М	S	-	М	-	-	-	S	М	-		-	-
S-Stroi	ng;M-M	ledium	;L-Low	7												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

### **BASICS OF JAVA**

Object oriented programming concepts – objects – classes – methods and messages – abstraction and encapsulation inheritance–abstractclasses–polymorphism.-ObjectsandclassesinJava–definingclasses–methods-accessspecifiers–staticmember –constructors–finalize method.

# ARRAYS, OPERATORS, STRINGS&OBJECTS

Arrays - Operators: Arithmetic Operators, The Bitwise Operators, Relational Operators, Boolean Logical Operators, T Assignment Operator, The ? Operator, Operator Precedence, Using Parentheses, Control Statements: Java's Selecti Statements, Iteration Statements, Jump Statements–Strings-Packages–Java-Doccomments—Inheritance–classhierarch polymorphism–dynamicbinding–finalkeyword–abstractclasses-TheObjectclass–Reflection–interfaces–objectcloning– innerclasses–proxies.

### EVENTS&GRAPHICSPROGRAMMING

I/Streams- Filter and pipe streams- Byte Code interpretation- Basics of event handling - event handlers- adapterclasses actions-mouseevents-AWTeventhierarchy-Graphicsprogramming-Frame-Components-workingwith2Dshapes.

### SWING&GENERICPROGRAMMING, APPLETS

Introduction to Swing – Model-View-Controller design pattern – buttons – layout management – Swing Components exception handling – exception hierarchy – throwing and catching exceptions - Motivation for generic programming genericclasses–genericmethods–genericcodeandvirtualmachine–inheritanceandgenerics–reflectionandgenerics. Applets and HTML- Security Issues, Applets and Applications, passing parameters to applets. Creating a Swing Applet.

#### THREADS&SOCKETPROGRAMMING

Multi-threaded programming-interrupting threads-thread states-thread properties-thread synchronization-Executors-synchronizers-Socket Programming-UDPD at a gram-Introduction to Java Beans.

### LIST OF EXPERIMENTS.

- 1. Write a JAVA program to search the largest element from the given array.
- 2. Write a JAVA program to sort the strings in an alphabetical order.
- 3. Write a JAVA program to extract a portion of a character string and to print the extracted portion and the remaini portion of the string. Assume that m characters are extracted, starting with the nth character.
- 4. Write a JAVA program for illustrating overloading and overriding methods in JAVA.
- 5. Write a JAVA program which illustrates the implementation of multiple inheritance using interfaces in JAVA.
- 6. Write a JAVA program to create your package for basic mathematical operations such as add, subtract, multiply. Demonstrate the use of this package in another class.
- Write a JAVA program that counts the number of digits in a given number. If an alphabet is entered instead of a numb the program should not terminate. Instead it should display appropriate error message. (Exception Handling).
- 8. Write a JAVA program to move the text "JAVA PROGRAMMING LAB" diagonally using Applet.
- 9. Write a JAVA program to create an Applet with a label "Do you know car driving?" and two buttons Yes, NO. When the user clicks "Yes" button, the message "Congrats" must be displayed. When the user clicks "NO "button, "Regrets" must be displayed.
- 10. Write a JAVA program to animate the face image using Applet.
- 11. Write a JAVA program to create four Text fields for the name, street, city and pin code with suitable Labels. Also ad button called "My Details". When you click the button, your name, street, eity, and pin code must appear in the T

fields.

#### **TEXTBOOKS:**

- 1. CayS.Horstmann and GaryCornell, "CoreJava:VolumeI-Fundamentals", Ninth Edition, SunMicrosystemsPress, 2013.
- 2. ElliotteRustyHarold, "JavaNetworkProgramming", O"Reillypublishers, 2000(UNITII).
- 3. EdRoman, "MasteringEnterpriseJavaBeans", JohnWiley&SonsInc., 1999 (UNITIIIandUNITV).

#### **REFERENCES:**

- 1. K.ArnoldandJ.Gosling,"TheJAVAprogramminglanguage", Thirdedition, PearsonEducation, 2008.
- 2. TimothyBudd, "Understanding Object-orientedprogrammingwithJava", UpdatedEdition, PearsonEducation, 2000.
- 3. C.ThomasWu,"AnintroductiontoObject-orientedprogrammingwithJava", FourthEdition, TataMcGraw-
- HillPublishingcompanyLtd.,2006.

COUR	SEDESIGNERS			
S.No.	NameoftheFaculty	Designation	Department / Name of the College	MailID
1	Mrs.V.Subapriya	Assistant Professor-II	CSE / AVIT	subapriya.cse@avit.ac.in
2	Dr.K.Sasikala	AssociateProfessor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

Witt M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

37	021003	2		I	NTERN	NET OF THINGS				P (	Credit				
57	02100.	,								CC	2	3	0	0	3
<b>PREA</b> I To stud	MBLE ly and u	nderstar	nd the te	chnolog	gies invo	olved in	Internet	of Thin	gs (IoT)	and app	oly then	n practic	ally.	I	
PRERI	EQUIS	ITE :NI	IL												
COUR	SE OB	JECTI	VES												
1.	To unc	lerstand	the basi	ic conce	pts of I	TC									
2.	To stu	dy the n	nethodol	ogy of I	ΙΟΤ										
3.	To Develop IOT applications using Raspberry PI														
4.	To Develop IOT applications using Arduino and Intel Edison														
5.	5. To apply cloud concepts in IOT														
COUR	SE OU	тсом	ES												
On the	success	ful com	pletion of	of the co	ourse, st	udents v	vill be a	ble to							
<b>CO1:</b> A	Able to u	understa	nd basic	es in IO	Г						J	Understa	nd		
<b>CO2:</b> A	Able to u	understa	and Met	hodolog	gy in IO	Г						Apply			
<b>CO3:</b> A	Able to	design l	IOT app	lication	s using 1	Raspber	ry				4	Analyze			
<b>CO4</b> : A	Able to a	lesign I	OT appl	ications	using A	urdino	and Inte	el Edisor	1			Analyze			
CO5: .	Able to	apply C	loud co	nputing	in IOT							Apply			
MAPP	ING W	ITH PI	ROGRA	MME	OUTCO	OMES A	AND PH	ROGRA	MME S	SPECIF	IC OU	TCOM	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO2	М	М	М	М	-	-	-	-	-	-	-	-	М	М	М
CO3	М	М	S	М	-	-	-	-	-	-	-	-	М	М	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	Μ	М	S
CO5	S	Μ	М	Μ	-	-	-	-	-	-	-	-	Μ	Μ	S
S- Stro	ng; M-	Mediun	n; L-Lo	w											

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

#### SYLLABUS INTRODUCTION

Introduction-Characteristics-Physical design - Protocols – Logical design – Enabling technologies – IoT Levels – Domain Specific IoTs – IoT vs M2M.

# IOT METHODOLOGY

IoT systems management - IoT Design Methodology - Specifications Integration and Application Development.

### IOT WITH RASPBERRY

Bascis of Raspberry PI, Physical device – Raspberry Pi Interfaces – Programming – APIs / Packages – Web services

### IOT WITH AURDINO AND INTEL EDISON

Basics of Aurdino, Intel Edison with Arduino- Interfaces - Arduino IDE - Programming - APIs and Hacks

### APPLICATIONS

Real time applications of IoT- Connecting IoT to cloud – Cloud Storage for Iot – Data Analytics for IoT – Software & Management Tools for IoT.

#### **TEXT BOOKS**

 Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015.
 Manoel Carlos Ramon, "Intel® Galileo and Intel® Galileo Gen 2: API Features and Arduino Projects for Linux Programmers", Apress, 2014.

#### REFERENCES

1. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE / AVIT	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkv@edu.in

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

													<u> </u>		
359	921C08			M	ACHIN	NE LEA	ARNIN	G			Category	L	Т	Р	Cre dit
											CC	3	0	0	3
PREA	MBLE														
To pro	vide an	in-dep	th knov	vledge	about n	nachine	learnin	ig conc	epts an	d identi	fy applica	tions su	itable for	· diffe	rent
types o	1 macm	ne lear	ning wi	in suita	bie just	incation	1.								
PRER	EQUIS	ITE: N	IL												
COUR	SE OB	JECTI	VES												
1.	To stu	idy the	outline	the key	concep	ots of m	achine	learning	5						
2.	To un	derstan	d the su	pervise	d learn	ing and	classifi	cation t	echniq	ues					
3.	То ар	ply the	concept	t of uns	upervis	ed learr	ning and	l Cluste	ring for	r applica	ations				
4.	To inf	fer theo	retical a	and prac	ctical as	spects of	f reinfo	rcemen	t learni	ng					
COUP	SE OU	TCON	(FC	I		1				0					
COUR	SE UU	ICON	IES												
On the	success	ful con	npletion	of the	course,	student	s will b	e able t	0						
<b>CO1:</b> C	Outline t	he key	concept	ts of ma	achine l	earning						Unders	stand		
CO2:St	ummari	ze supe	rvised l	earning	and cla	assificat	tion tecl	nniques				Unders	stand		
<b>CO3:</b> A	Apply th	e conce	ept of ur	nsuperv	ised lea	rning a	nd Clus	tering f	for appl	ications		Apply			
CO4:In	fer theo	oretical	and pra	ctical a	spects of	of reinfo	orcemen	ıt learni	ng			Unders	stand		
<b>CO5:</b> In	nfer the	oretical	and pra	actical a	spects	of reinf	orceme	nt learn	ing			Under	stand		
			DOCD	4 3 4 3 4 3			C AND	DDOC							
MAPP	ING W		ROGR			COME	5 AND	PROC	KAMI	VIE SPI	LCIFICC		MES	<u>г</u>	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 PSO1 PSO			$\begin{array}{c} P \\ S \\ O \\ 3 \end{array}$
CO1	S	-	-	-	-	L	-	-	-	-	-	L	L	-	-
CO2	S	S	S	L	-	L	-	L	L	-	L	L	S	M	L
CO3	S	S	М	L	-	L	-	L	L	-	L	L	S	Μ	L
CO4	S	L	М	L	-	L	-	-	-	-	-	L	-	-	-
CO5	S	L	S	-	-	L	-	L	-	-	-	L	-	L	-
S- Stro	ng; M-N	Medium	ium; L-Low												

CHIH.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg. Y.M.K.V. Engg. College, Salem.

#### INTRODUCTION

Machine Learning - Examples of machine learning applications- Types of machine learning –Model selection and generalization – Guidelines for Machine Learning Experiments

#### SUPERVISED LEARNING

Classification - Decision Trees – Univariate Tree – Multivariate Tree - Pruning – Perceptron – Multilayer Perceptron - Back Propagation – Cross Validation and Resampling Methods

#### UNSUPERVISED LEARNING

Clustering- Mixture densities -K-means - EM Algorithm – Supervised Learning After Clustering- Hierarchical Clustering

#### **DIMENSIONALITY REDUCTION**

The Curse of Dimensionality –Subset Collection - Principal Component Analysis - Factor Analysis – Linear Discriminant Analysis

### **REINFORCEMENT LEARNING**

Single State Case – Elements of Reinforcement Learning - Model Based Learning – TemporalDifference Learning – Generalization in Reinforcement Learning - Policy Search

#### **TEXT BOOKS**

1. EthemAlpaydin, Introduction to Machine Learning MIT Press, 2014.

#### REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Mr. S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@av it.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmk vec.edu.in

Will M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

359	921C04			וח	TD I I	7 A D NII	NC		Catego	ory	L	Т	Р	Cred	it
				DI		LANNI	NG		СС		3	0	0	3	
PREA	MBLE										-	-		•	
This co	ourse pr	ovides	an intro	oductior	n to the	basics	of mach	nine lear	ning, n	eural ne	twork	s, and	l Deep	learnin	g
technic	jues. Th	is cour	se also j	provide	s the lea	arning p	practice	and acq	uires ki	nowledg	e on c	leep l	earnin	g tools.	
PRER	EQUIS	ITE: N	ΠL												
COUR	SE OB	JECT	IVES												
1.	To stu	idy the	basics of	of mach	ine lear	ning, n	eural ne	etworks	and dee	p learni	ng				
2.	To stu netwo	dy the orks	present	the ma	themati	cal, stat	tistical a	and com	putation	nal chall	enges	of bı	uilding	neural	
3.	To stu	idy the	dimens	ionality	reduct	ion tech	niques								
4.	To know deep learning techniques to support real-time applications														
5.	DEEP LEARNING       CC       3       0       0       3         REAMBLE         his course also provides the learning practice and acquires knowledge on deep learning tools.         REREQUISITE: NIL         OURSE OBJECTIVES         To study the basics of machine learning, neural networks and deep learning       To study the present the mathematical, statistical and computational challenges of building neural networks.         To study the dimensionality reduction techniques       To know deep learning techniques to support real-time applications       To study the dimensionality reduction techniques         To examine the case studies of deep learning techniques       Understand         OURSE OUTCOMES         OURSE OUTCOMES         OURSE OUTCOMES         Ounderstand basics of deep learning models         Apply         O2: Implement various deep learning models         Ourderstand apply scaling up machine learning techniques and associated mputing techniques and technologies         OF: Explore the deep learning application         Create         OUNDERSING         OUNDERSING         OURSE OUTCOMES         OI: Understand         OI: Understand apply scalin														
COUR	35921C04       DEEP LEARNING       CC       3       0       3         REAMBLE         is course also provides the learning practice and acquires knowledge on deep learning tools.         REREQUISITE: NIL         OURSE OBJECTIVES         To study the basics of machine learning, neural networks and deep learning       To study the present the mathematical, statistical and computational challenges of building neural networks         To study the dimensionality reduction techniques       To study the dimensionality reduction techniques       Image: Colspan="2">To study the dimensionality reduction techniques         To examine the case studies of deep learning techniques       Image: Colspan="2">Understand         OURSE OUTCOMES         m the successful completion of the course, students will be able to       Image: Colspan="2">Understand         OURSE outrouses       Apply         O3: Realign high dimensional data using reduction techniques and associated mputing techniques and technologies       Apply         O3: Realign high dimensional data using reduction techniques and associated mputing techniques and technologies       Apply         O5: Analyse optimization and generalization in deep learning       Create       Apply         O6: Explore the deep learning application       Create       Apply														
On the	success	ful con	npletior	of the	course,	student	ts will b	e able to	0			-			
<b>CO1:</b> U	Jndersta	and bas	ics of de	eep lear	ning								Unde	rstand	
<b>CO2:</b> I	mpleme	ent vario	ous deej	p learni	ng mod	els							Ap	ply	
CO3: F	Realign	high di	mensior	nal data	using r	eductio	n techn	iques					Ap	ply	
CO4: U comput	Jndersta	and and and aniques	apply sand tec	scaling hnologi	up mac	hine lea	terning te	echnique	es and a	issociate	d		Ap	ply	
<b>CO5:</b> <i>A</i>	Analyse	optimiz	zation a	nd gene	eralizati	on in de	eep lear	rning					Ap	ply	
<b>CO6:</b> E	Explore	the dee	p learni	ng appl	ication								Cr	eate	
MAPP	ING W	ITH P	ROGR	AMM	E OUT	COME	S AND	PROG	RAMN	IE SPE	CIFI	C OU	TCO	MES	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO 12	PSO 1	PSO2	PSC 3
CO1	-	S	М	-	М	-	-	М	М	-	Μ	Μ	М	-	-
CO2	S	S	S	S	М	-	-	Μ	М	-	Μ	Μ	-	-	M
CO3	S	Μ	М	S	М	-	-	М	М	-	Μ	Μ	Μ	-	-
<b>CO4</b>	S	Μ	Μ	S	М	-	-	М	М	-	Μ	Μ	Μ	-	-
CO5	S	Μ	М	S	Μ	-	-	М	М	-	Μ	Μ	M	-	-
CO6	S	Μ	Μ	S	М	-	-	М	Μ	-	Μ	Μ	-	М	Μ
S- Stro	ng; M-I	Mediun	n; L-Lo	W											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### **INTRODUCTION**

Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximate

#### **DEEP NETWORKS**

History of Deep Learning- A Probabilistic Theory of Deep Learning- Back propagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks Convolution Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning.

#### DIMENSIONALITY REDUCTION

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization.

#### **OPTIMIZATION AND GENERALIZATION**

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization- Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models-Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience

#### CASE STUDY AND APPLICATIONS

magenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec

- Joint DetectionBioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions.

#### **REFERENCE BOOKS**

**1.** CosmaRohillaShalizi, Advanced Data Analysis from an Elementary Point of View, 2015.

2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.

3. Ian Goodfellow, YoshuaBengio, Aaron Courville, Deep Learning, MIT Press, 2016.

**4.** Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Mr. S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkyec.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

										-		-1	<u> </u>			
37	021C01								OENIO	Cat	tegory	L	Т	Р	C	redit
			ART	IFICIA	L INT	ELLIG	ENCE	AND A	GENT	S CO	2	3	0	0		3
PREAM	IBLE															
This cou	irse cov	ers four	ndationa	l techni	iques ar	nd tools	require	d for A	tificial	intellige	ence and	agents. Tl	nis cour	rse sp	otlig	hts the
concepts	s, princi	ples, a	nd techi	niques a	are app	licable i	in Arti	ficial in	telligen	ice and	agents en	nvironmei	nt in in	dustr	y and	d real-
world ex	perienc	e.														
NII	QUISI	IE														
COURS	SE OBJ	ECTIV	<b>'ES</b>													
1.	To lea	rn abou	it compi	uter syst	tems that	at exhibi	it intelli	igent bel	naviour	, design	intelliger	nt agents.				
2.	To ide netwo	entify A orks for	I proble solving	ms and problem	solve tl ns,	ne probl	ems, de	esign kno	owledge	e represe	entation a	and expert	system	is, des	sign 1	neural
3.	To un	derstan	d differe	ent knov	vledge 1	epresen	tation t	echniqu	e and re	easoning	5.					
4.	To Ur	nderstar	nd conce	pt of kr	nowledg	e repres	sentatio	n i.e. pro	opositio	onal logi	c, first or	der logic.				
5	To kn	ow the	applicat	ions of	AI											
COURS	SE OUT	COMI	ES													
On the s	uccessfi	ul comp	letion o	f the co	urse, sti	udents v	vill be a	ble to								
CO1:U	ndersta	nd conc	epts of A	Artificia	ıl Intelli	gence a	nd diffe	erent typ	es of in	telligent	t agents	Understa	and			
	r arcmit	ecture.										Apolyzo				
CO2:Fo	ormulate	e proble	ems as s	tate spa	ce searc	h proble	em & ef	fficiently	y solve	them		Anaryze				
<b>CO3:</b> U	Jndersta	nd diffe	erent kno	owledge	e repres	entation	technic	que and	reasoni	ng		Apply				
CO4: U	Indersta	nd conc	ept of k	nowled	ge repre	esentatio	on i.e. p	ropositi	onal log	gic, first	order	analyze				
logic.												Analyza				
CO5: A	analyze		$\frac{100}{2}$	AI conce	epts in r	eal time	).			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Anaryze	~			
MAPPI	NG WI	TH PR	OGRA	MME (	JUTCO	DMES A	AND PI	ROGRA	MME	SPECI	FIC OU	<b>FCOME</b>	\$			
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PS	02	PSO3
<u>CO1</u>	S	M	L	-	M	-	-	-	-	-	-	M	S	N	M	M
CO2	S	M		-	M	-	-	-	-	-	-	M	S		M	M
CO3	S C	M		-	M	-	-	-	-	-	-	M	S C	1	VI M	
	5 C	M		-	M	-	-	-	-	-	-	M	2 2		vi M	M
S- Strong	3 σ· Μ_Μ	edium.	L-Low	_	141	-	-	-	-	-	-	141	6		1	141
	8,	carain,														

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

### **Introduction to AI, Intelligent Agents and Searching**

Definition of AI, birth of AI, brief history, Turing test, Types of environment, Types of agents, PEAS( Performance measure, Environment, Actuators, Sensors), Introduction to searching, State Space, SAGP (State, Action, Goal test, Path cost), DFS, BFS (Completeness, Time complexity, Space complexity, Optimality), Heuristics, Local Search Algorithm, Hill Climbing. Applications of Artificial Intelligence in real word. .

### **CSP**, Game Playing and Logics

Constrain Satisfaction Problems examples, Approaches to solve CSPs, Test and generate method, back tracking. Game Playing, Optimal decision in games, Min Max algorithm, Evaluation functions, Introduction to Propositional Logic and First Order Logic, Syntax, Substitution, Unification, Deduction, Soundness, Completeness, Consistency, Satisfiability, Expert Systems.

#### **Uncertain Knowledge, Reasoning**

Probabilistic Reasoning, Review of Probability Theory, Probabilistic Inference Rules, Bayes Theorem, examples of Bayes theorem, Introduction to Learning, Taxonomy of Learning Systems, Concept Learning, Find-S algorithm, Candidate Elimination Algorithm.Introduction to Neural Networks, Biological Neural Networks, Artificial Neural Networks, Perceptron, Perceptron Learning Rule, Delta Rule, Applications of Neural Networks.

#### **Knowledge Representation**

Definition and importance of Knowledge, Issues in Knowledge Representation, Knowledge Representation Systems, Properties of Knowledge Representation SystemsTypes of Knowledge Representation Systems: Semantic Nets, Frames, Conceptual Dependencies, Scripts, Rule Based Systems(Production System), Propositional Logic, PredicateLogicPropositional Logic(PL): Syntax, Semantics, Formal logic-connectives, truth tables, tautology, validity, well-formed-formula, Inference using Resolution, Backward Chaining and Forward Chaining. Predicate Logic: FOPL, Syntax, Semantics, Quantification, Inference with FOPL: By converting into PL (existential and universal instantiation), Unification and lifting, Inference using resolution. Bayesian Networks, Reasoning in Belief NetworksFuzzy Logic: Fuzzy Sets, Membership in Fuzzy Set, Fuzzy Rule base Systems

#### **Applications of AI**

Expert Systems, Components of Expert System: Knowledge base, inference engine, user interface, working memory, Development of Expert Systems Natural Language Processing: Natural Language Understanding and Natural Language Generation, Steps of Natural Language Processing: Lexical Analysis(Segmentation, Morphological Analysis), Syntactic Analysis, Semantic Analysis, Pragmatic Analysis, Machine Translation, Machine Vision Concepts: Machine vision and its applications, Components of Machine Vision System Robotics: Robot Hardware (Sensors and Effectors), Robotic Perceptions

#### **TEXT BOOKS:**

- 1. Stuart Russell and Peter Norvig Artificial Intelligence A Modern Approach, PEARSON Education.
- 2. Simon Haykin -Neural Networks PHI.

### **REFERENCES:**

- **1.** N. P. Padhy Artificial Intelligence and Intelligence Systems, OXFORD publication.
- 2. B. YagnaNarayana Artificial Neural Networks, PHIMichael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 3. NPTEL Lecture: Prof. SudeshnaSarkar, http://nptel.ac.in/courses/106105077/
- 4. NPTEL Lecture: Prof. P.Das Gupta, http://nptel.ac.in/courses/106105079/3.
- M. 5. NPTEL Lecture: Prof. Deepak Khemani, http://nptel.ac.in/courses/106106126/

S.No	Name of the Faculty	Designation	Department / Name Dr. of the College	M. NITHYA Prof & Haail ID
1.	Dr. M. Adimoolam	professor	Dept. of Co CSE / AVITY.M.K.V	nputer Science & Engg admoglam sse@avit.ac.i <u>n</u>
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkvec.edu.in

35	921C02			DI			1 37/01/	20		Cat	egory	L	Т	P Credit		redit
				BI	G DAT	'A ANA	LYTIC	28		CC	Ż	3	0	0		3
PREAM	IBLE												11			
This cou	rse cove	ers foun	dationa	l techni	ques an	d tools i	required	l for big	g data ai	nalytics.	This cou	rse spotlig	ghts the	conc	epts,	
principle	es, and to	echniqu	ues are applicable in big data analytics environment in industry and									l-world ex	perienc	e.		
PRERE NIL	QUISI'	ΓE														
COURS	E OBJ	ECTIV	ES													
1.	To un	derstand	d how b	ig data a	analytic	s can le	verage i	into a ke	ey comp	oonent						
2.	To un	derstand	d the big	g data to	ols with	n their a	pplicati	ons								
3.	To un	derstand	d the big	g data re	ports fo	or the ex	isting to	ools								
4.	To un	derstand	d the big	g data ap	plicatio	ons like	Mongo	DB, Ca	assandra	a and Hi	ve.					
COURS	E OUT	COME	ËS													
On the s	uccessfi	ıl comp	letion of	f the co	urse, stu	idents w	vill be a	ble to								
<b>CO1:</b> U	Indersta	nd the b	oasics of	digital	data an	d introd	uction t	to big da	ata			Understa	und			
<b>CO2:</b> A	nalyze	the basi	c big da	ta chall	enges, i	mportar	nt and te	echnolog	gies.			Analyze				
CO3: S architec	olve big ture and	g data ai l techno	nalytics logies.	challen	ges with	n the he	lp of Ha	adoop a	nd Mon	goDB		Apply				
<b>CO4:</b> A	nalyze	big data	storage	e like M	ongo D	B, Cass	andra a	nd Hive				Analyze				
<b>CO5:</b> A	nalyze	Pig and	Hive in	terms of	of proce	ssing ar	nd to de	sign Jas	per Rep	oorts.		Analyze				
MAPPI	NG WI	TH PR	OGRA	MME (	OUTCO	OMES A	AND PI	ROGRA	AMME	SPECI	FIC OUT	COMES	5			
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO11	PO12	PSO1	PS	02	PSO3
CO1	S	Μ	L	-	М	-	-	-	-	-	-	М	S	N	1	Μ
CO2	S	М	L	-	М	-	-	-	-	-	-	М	S	N	1	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	S	N	Λ	М
CO4	S	М	L	-	Μ	-	-	-	-	-	-	М	S	Ν	Λ	Μ
CO5	S	Μ	L	-	М	-	-	-	-	-	-	Μ	S	N	1	Μ
S-Stron	g; M-M	edium;	L-Low													

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

# DIGITAL DATA AND INTRODUCTION TO BIG DATA

Types of Digital Data - Structured Data - Semi-Structured Data - Unstructured Data - Introduction to Big Data - What is Big Data - Why Big Data - Traditional Business Intelligence (BI) versus Big Data - Typical Hadoop Environment - Changes in the Realms of Big Data - Coexistence of Big Data and Data Warehouse.

### **BIG DATA ANALYTICS**

What's in Store? - Big Data Analytics - Classification of Analytics - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Greatest Challenges that Prevent Businesses from Capitalizing on Big Data - Big Data Analytics Important - Technologies for Meet the Challenges Posed by Big Data - Data Science - Data Scientist - Big Data Environment - Analytics Tools.

### HADOOP

Introduction to Hadoop - Hadoop Components - Hadoop Conceptual Layer - High Level Architecture of Hadoop - Business Value of Hadoop -Hadoop Distributed File System - Processing Data with Hadoop - MapReduce Daemons - MapReduce working - MapReduce Example - Managing Resources and Application with Hadoop YARN - Hadoop Ecosystem.

### MONGODB, CASSANDRA AND HIVE

MongoDB - RDBMS and MongoDB - Data Types in MongoDB-CRUD- Introduction to Apache Cassandra - Features of Cassandra - CQL Data Types -CQLSH- Keyspaces-CRUD-Collections- Using a Counter - Time To Live (TTL)-Alter - Import and Export - Export to CSV - Import from CSV - Import from STDIN - Export to STDOUT - System Tables - Practice Examples - Introduction to Hive - Hive Architecture - Hive Data Types - Hive File Format - Hive Query Language - RCFILE Implementation - SERDE - UDF.

#### PIG AND JASPER REPORTS

Anatomy of Pig - Pig on Hadoop - Pig Philosophy - Use Case for Pig: ETL Processing - Pig Latin Overview - Data Types in Pig - Running Pig - Execution Modes of Pig - HDFS Commands - Relational Operators - Eval Function -Complex Data Type - Piggy Bank - UDF (User Defined Function) - Parameter Substitution - Diagnostic Operator -Word Count Example - When to use Pig? - When NOT to use Pig? - Pig at Yahoo - Pig versus Hive - Hive Vs Pig - Introduction to Jasper Reports, Jaspersoft Studio - Connecting to MongoDB NoSQL database - Connecting to Cassandra NoSQL Databases

### **TEXT BOOKS:**

- 1. Big Data and Analytics Seema Acharya and Subhashini C Wiley India
- 2. Big data for dummies Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman
- 3. Hadoop: The Definitive Guide by Tom White
- 4. Hadoop in action Chuck Lam
- 5. Hadoop for dummies Dirk Deroos, Paul C. Zikopoulos, Roman B. Melnyk, Bruce Brown

### **REFERENCES:**

- 1. Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007
- 3. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 4. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 2012.
- **5.** Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", Wiley and SAS Business Series, 2012.

#### **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Assistant professor G-II	CSE / AVIT	rjaichandran@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkvec.edu.in

Dr. M. NITHYA,

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

350	921C03										Categor	y L	Т	Р	Credit
55	21005			DA	ΓA AN	ALYT	ICS US	ING P	YTHO	N	CC	3	0	0	3
PREA	MBLE												II		
This co	ourse w	ill take	you fr	om the	basics	of Pytl	non to	explorii	ng man	y differ	ent types	of data.	You wil	l learn	how to
prepare	e data f	or analy	ysis, per	rform s	imple s	tatistica	al analy	ses, cre	eate mea	aningfu	l data visı	alization	s, predic	et futur	e trends
from da	ata, and	more.													
PRER	EQUIS	ITE: 1	NIL												
COUR	SE OB	IECT	VES												
			· · · ·	D (1			• .	C		. 1					
<b>1.</b> Un	derstan	d the ba	isics in	Python	prograr	nming i	in terms	s of con	structs,	control	statement	s, string f	unction	S	
$\begin{array}{c} 2. & \mathbf{To} \\ \mathbf{dat} \end{array}$	learn te asets	o use Pa	andas D	ata Fra	mes, N	umpy	multi-di	imensic	onal arra	iys, and	SciPy lib	raries to v	vork wit	h a var	ous
3. To	learn al	bout pa	ndas, ar	open-s	source 1	ibrary,	and we	will us	e it to lo	oad, ma	nipulate, a	inalyze, a	nd visua	lize co	ol
	intro du	aa anat	hanona		a lihnan		+ 100mm	and wa			of its mas	hing loom	ina ala	anithma	to build
<b>4.</b> 10 sma	art mod	els and	make c	ool pre	dictions	y, sciki S	t-learn,	and we	will us	e some	of its mac	mine learn	ing argo	oriunns	to build
COUR	SE OU	TCOM	1ES												
On the	success	ful con	npletion	of the	course.	student	s will b	e able t	0						
							.5	•							
<b>CO1:</b> E	Basics ir	n Pytho	n progra	amming	g in tern	ns of co	onstruct	s, contro	ol stater	nents, s	string	Under	stand		
	londog I	Joto Er	mag N	umpu r	nulti di	montio	nolormo	va and	CoiDy 1	ibroriog	to work				
with a v	arious (	datasets	annes, IN 3	umpy n	nunn-an	mentio	liai arra	ys, and	SCIPYI	Ibraries	to work	Under	stand		
<b>CO3:</b> 0	pen-sou	arce lib	rary, an	d we wi	ill use it	t to load	l, manij	oulate, a	analyze,	, and vis	sualize co	ol Under	stand		
datasets	5.		•						•						
CO4: S	cikit-le	arn, and	d we wi	ll use so	ome of	its macl	hine lea	rning a	lgorithn	ns to bu	ild smart	Apply			
models	and ma	ke cool	predict	ions		~~~~	~								
MAPP	ING W	TTH P	ROGR	AMM	E OUT	COME	S AND	PROG	GRAMN	ME SPI	ECIFIC C	DUTCON	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	S	_	М	_	-	_	_	_	_	М	S	S	M
CO2	S	M	S S	-	M	-	-	-	-	-	-	M	~ M	S	M
CO3	S	M	S	-	М	-	-	-	-	-	-	М	S	-	М
CO4	S	М	S	-	М	-	-	-	-	-	-	М	S	S	М
S-Stro	ng; M-N	Mediun	n; L-Lov	W		I	1	I	1	I			I	1	

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

### **PYTHON BASICS**

Structure of Python Program-Underlying mechanism of Module Execution-Branching and Looping-Problem Solving Using Branches and Loops-Functions - Lists and Mutability- Problem Solving Using Lists and Functions

### SEQUENCE DATATYPES AND OBJECT_ORIENTED PROGRAMMING

Sequences, Mapping and Sets- Dictionaries- -Classes: Classes and Instances-Inheritance-Exceptional Handling-Introduction to Regular Expressions using "re" module.

### USING NUMPY

Basics of NumPy-Computation on NumPy-Aggregations-Computation on Arrays-Comparisons, Masks and Boolean Arrays-Fancy Indexing-Sorting Arrays-Structured Data: NumPy's Structured Array.

### DATA MANIPULATION WITH PANDAS

Introduction to Pandas Objects-Data indexing and Selection-Operating on Data in Pandas-Handling Missing Data-Hierarchical Indexing - Combining Data Sets - Aggregation and Grouping-Pivot Tables-Vectorized String Operations -Working with Time Series-High Performance Pandas- and query()

### VISUALIZATION WITH MATPLOTLIB:

Basic functions of matplotlib-Simple Line Plot, Scatter Plot-Density and Contour Plots-Histograms, Binnings and Density-Customizing Plot Legends, Colour Bars-Three-Dimensional Plotting in Matplotlib.

### REFERENCES

- 1. Jake VanderPlas ,Python Data Science Handbook Essential Tools for Working with Data, O'Reily Media,Inc, 2016
- 2. Zhang. Y, An Introduction to Python and Computer Programming, Springer Publications, 2016
- 3. Joel Grus ,Data Science from Scratch First Principles with Python, O'Reilly Media,2016
- 4. T.R.Padmanabhan, Programming with Python, Springer Publications, 2016

CO	URSE DESIGNERS			
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35	021C10			THI	EORY	OF			Ca	tegory	L	Т	Р	С	redit
	021017		0	COMP	UTAT	ION				CC	3	0	0		3
PREA This c contex patter PRER	MBLE course kt of fo n recog EQUIS	helps ormal gnition	the lea languag system	rners t ges and	o knov d their	w the recog	models nizers.	s of co This	mputat can be	tion, alo applied	ng with in desi	their gning	vari con	ants npiler	in the s and
NIL COUR	SE OF	BJECT	TIVES												
1.	To pr persp	rovide ective	introdu of form	uction t nal lan	to som	e of the	e centr	al idea	s of the	eoretical	comput	er sci	ence	from	the
2.	To in	troduc	the fi	undam	ental c	oncept	s of fo	rmal la	anguag	es, gram	mars an	d auto	mat	a theo	ory
3.	Class	sify ma	chines	by the	ir pow	er to re	ecogni	ze lang	uages						
4.	Employ finite state machines to solve problems in computing														
5.	To understand deterministic and non-deterministic machines.														
6.	To understand the differences between decidability and un-decidability														
COUR	To understand the differences between decidability and un-decidability <b>SE OUTCOMES</b>														
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	idents	will be	able to	0					
CO1: recogn	Unders ize the	stand the langu	he conc ages	cept of	abstra	ct mac	hines a	and the	ir powe	er to	Ţ	Under	stand	d	
CO2:	Disting	guish b	etween	decid	ability	and ur	n-decid	lability	,		I	Under	stand	d	
<b>CO3:</b>	Gain p	roficie	ncy wi	th matl	hemati	cal too	ls and	formal	metho	ods	τ	Under	stand	d	
CO4: compu	Employ ting pr	y finite oblem	e state i s	machin	es for	model	ing and	d solvii	ng			App	oly		
<b>CO5</b> :	Design	conte	xt free	gramn	nars for	r forma	al lang	uages				Cre	ate		
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	OMES	AND I	PROG	RAMM	E SPEC	CIFIC			
COs	PO1	<b>PO2</b>	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO11	PO12	PSO	1 P	SO2	PSO
CO1	_	S	M	_	М	_	_	-	_	_	М	S		Μ	-
CO2	-	S	M	-	Μ	-	-	-	-	-	М	S		М	-
CO3	-	-	M	-	S	-	-	-	-	-	M	. 1		M	-
CO4	S	M	M	-	M	-	-	-	-	M	M	· _		M	S
$\frac{CU5}{S_{-}Stro}$	- nα· Μ_	S Mediu	N m·⊥_I	- 0W	M	-	-	-	-	Dr	M NIT	HYA		-	-
5- 500	iig, ivi-	iviculu	, L-L	.0 W					5		Prof &	Head.	Eng	2	
									1	V.M.K.V	. Engg. Co	llege, S	alem.		

# SYLLABUS INTRODUCTION

Basic Mathematical Notation and techniques- Finite State systems – Basic Definitions – Finite Automaton – DFA & NDFA – Finite Automaton with  $\in$ -moves – Regular Languages- Regular Expression – Equivalence of NFA and DFA – Equivalence of NDFA"s with and without  $\in$ -moves – Equivalence of finite Automaton.

# **REGULAR EXPRESSIONS**

Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Properties of Regular Languages Pumping Lemma for Regular Languages, Applications of the Pumping Lemma, Closure Properties of Regular Languages, Decision Properties of Regular Languages.

# **CONTEXT-FREE GRAMMARS:**

Chomsky hierarchy of languages.Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata,: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata.

# TURING MACHINES

Definitions of Turing machines – Models – Computable languages and functions –Techniques for Turing machine construction – Multi head and Multi tape Turing Machines – The Halting problem – Partial Solvability – Problems about Turing machine

# **UN-DECIDABILITY:**

A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines, Post's Correspondence Problem, Other Undecidable Problems, Intractable Problems: The Classes P and NP, An NP Complete Problem

# TEXT BOOKS

- 1. Introduction to Automata Theory, Languages, and Computation, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education, 3rd Edition.
- 2. Introduction to the Theory of Computation, Michael Sipser, Cengage Learning, 3rd Edition.

# REFERENCES

- 1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
- **4.** Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson Education.
- 5. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

COURSE DESIGNERS									
S. No.	Name of the	Designation	Department / Name Mail ID						
	Faculty		of the College						
1.	R.shobana	Assistant Professor	CSE / AVIT M. Nshobana@avit.ac.in						
2.	T.Geetha	Assistant Professor	CSE / VMKVEC Progeetha@vmkvec.ed						

37021C02			DIGITAL PRINCIPLES AND SYSTEM DESIGN (THEORY AND PRACTICALS)						Categor	у	L	Т	P o	Cre lit	
								LS)		CC		3	0	2 4	
PREA	MBLE		<u> </u>												
This (	course	helps t	the lea	rners t	o knov	w the	numbe	r conv	versior	n syster	ns, con	nbination	nal ci	rcuits,	and
seque	ntial cir	cuits.	This ca	an be a	pplied	in desi	igning	digital	syste	ms.					
PRERI NIL	EQUISI	TE													
COUR	SE OB.	JECTI	VES												
1.	Learn the various number systems.														
2.	Learn Boolean Algebra.														
3.	Understand the various logic gates.														
4.	Be fa	miliar	with v	arious	combir	nationa	al circu	its.							
5.	Be fa	miliar	with d	esignin	ig sync	hrono	us and	asynch	ironoi	is seque	ential ci	rcuits.			
COUR	SE OU	TCOM	IES												
On the	success	sful co	mpleti	on of tl	he cour	se, stu	idents v	will be	able t	.0					
1															
CO1:	Perforr	n arith	metic o	operati	ons in a	any nu	mber s	system				Und	erstan	d	
CO1: CO2: S technic	Perforr Simplif ques.	n arith y the E	metic o Boolear	operatien n expre	ons in a ssion u	any nu ising F	mber s K-Map	system and Ta	abulat	ion		Und	erstan pply	d	
CO1: CO2: S technic CO3: 0	Perforr Simplif ques. Gain kr	n arith y the E towled	metic o Boolean ge abo	operation n expre	ons in a ssion u	any nu ising F	mber s K-Map l its wo	and Ta	abulat mecha	ion mism.		Und A Und	erstan pply erstan	d d	
CO1: CO2: 5 technic CO3: 0 CO4: 1 hardwa	Perforn Simplif ques. Gain kr Use Bo are circ	n arith y the E owled olean s uit.	metic o Boolean ge abo simplif	operation n expre ut varion	ons in a ssion u ous gat techni	any nu using H tes and ques to	mber s K-Map l its wo o desig	and Ta orking n a co	abulat mecha	ion nism. tional		Und A Und	erstan pply erstan reate	d d	
CO1: CO2: 1 technic CO3: 0 CO4: 1 hardwa CO5: 1	Perforn Simplif ques. Gain kr Use Bo are circ Design	n arith y the E owled olean s uit. and A	metic o Boolean ge abo simplif	operation n expre ut varion ication of a gi	ons in a ssion u ous gat techni	any nu using H tes and ques to quenti	mber s K-Map l its wo o desig	system and Ta orking n a co cal circ	abulat mecha mbina uit.	ion mism. tional		Und A Und Cr	erstan pply erstan reate reate	d d	
CO1: CO2: ( technic CO3: ( CO4: 1 hardwa CO5: 1 MAPP	Perforn Simplif ques. Gain kr Use Bo are circ Design ING W	n arith y the E owled olean s uit. and An	metic o Boolean ge abo simplif nalysis ROGR	operation n expre ut varion ication of a gi AMMI	ons in a ssion u ous gat techni iven see E OUT	any nu using F tes and ques to quenti	mber s K-Map l its wo o desig al digit ES AN	system and Ta orking n a co cal circ D PRC	abulat mecha mbina uit.	ion mism. tional	SPECIF	Und A Und Cr Cr	erstan pply erstan reate reate	d d IES	
CO1: CO2: technic CO3: CO4: hardwr CO5: MAPP COs	Perforr Simplif ques. Gain kr Use Bo are circ Design ING W PO1	n arith y the E owled olean s uit. and An ITH P PO2	metic o Boolean ge abo simplif nalysis ROGR PO3	operation n expredut varion ication of a gi AMMI PO4	ons in a ous gat techni iven see E OUT PO5	any nu using H tes and ques to quenti COMI PO6	mber s K-Map l its wo o desig al digit ES AN PO7	and Ta orking in a co cal circ D PRO PO8	abulat mecha mbina uit. DGRA	ion nism. tional MME S PO10	SPECIF PO11	Und A Und Ci Ci FIC OUT PO12	erstan pply erstan reate reate CON PSO	d d IES 1 PSO	
CO1: CO2: technic CO3: CO4: hardwa CO5: MAPP COs CO1	Perform Simplif Ques. Gain kr Use Bo are circ Design ING W PO1	n arith y the E owled olean s uit. and An ITH P PO2 S	metic of Boolean ge abo simplif nalysis ROGR PO3 M	operation n expredut varion ication of a gi AMMI PO4	ons in a ous gat techni iven see E OUT PO5 M	any nu using F ces and ques to quenti COMI PO6	mber s K-Map l its wo o desig al digit ES AN PO7	and Ta orking in a co cal circ D PRO PO8	abulat mecha mbina uit. DGRA PO9	ion nism. tional MME S PO10	SPECIF PO11	Und A Und C: TIC OUT PO12 M	erstan pply erstan reate reate COM PSO	d d IES 1 PSO M	2 Pi O
CO1: CO2: ( technic CO3: ( CO4: ) hardwa CO5: 1 MAPP COs CO1 CO2	Perform Simplif ques. Gain kr Use Bo are circ Design ING W PO1 - -	n arith y the E oowled olean s uit. and Ai ITH P PO2 S S	metic of Boolean ge abo simplif nalysis ROGR PO3 M M	operation n expredute ut variation of a git AMMI PO4 - -	ons in a ous gat techni iven sec E OUT PO5 M M	any nu Ising H tes and ques to quenti COM PO6 - -	mber s K-Map l its wo o desig al digit ES AN PO7 - -	system and Ta orking n a co cal circ D PRC PO8 - -	abulat mecha mbina uit. DGRA PO9 -	ion nism. tional MME S PO10 - -	SPECIF PO11 -	Und A Und Ci Ci FIC OUT PO12 M M	erstan pply erstan reate reate FCOM PSO S S	d IES 1 PSO M M	
CO1: CO2: technic CO3: CO4: hardw CO5: MAPP COs CO1 CO2 CO3	Perform Simplif Ques. Gain kr Use Bo are circ Design ING W PO1 - - -	n arith y the E oowled olean s uit. and An ITH P PO2 S S S -	metic of Boolean ge abo simplif nalysis ROGR PO3 M M M	operation n expredut varie ication of a gi AMMI PO4 - - -	ons in a ous gat techni iven sea E OUT PO5 M M S	any nu using F ces and ques to quenti COM PO6 - - -	mber s X-Map l its wo o desig al digit ES AN PO7 - - - -	and Ta orking in a co cal circ D PRC PO8 - - -	abulat mecha mbina uit. DGRA PO9 - - -	ion nism. tional MME S PO10 - - - -	SPECIF PO11 - - -	Und A Und C: TC OUT PO12 M M M	erstan pply erstan reate reate COM PSO S S S	d IES 1 PSO M M M	
CO1: CO2: ( technie CO3: ( CO4: 1 hardw CO5: 1 MAPP COs CO1 CO2 CO3 CO4	Perform Simplif ques. Gain kr Use Bo are circ Design ING W PO1 - - - S	n arith y the E oowled olean s uit. and Ai ITH P PO2 S S - M	metic of Boolean ge abo simplif nalysis ROGR PO3 M M M M	operation n expredute ut variation of a git AMMI PO4 - - - - -	ons in a ous gat techni iven sec E OUT PO5 M M S M	any nu Ising H Tess and quest to quenti COM PO6 - - - - -	mber s K-Map l its wo o desig al digit ES AN PO7 - - - - -	system and Ta orking n a co cal circ D PRO PO8 - - - - - - -	abulat mecha mbina uit. DGRA PO9 - - - - -	ion mism. tional MME S PO10 - - - M	SPECIF PO11 - - M	Und A Und Ci Ci FIC OUT PO12 M M M M	erstan pply erstan reate reate COM PSO S S - -	d IES 1 PSO M M M M	2 P: 0

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

# UNIT I BOOLEAN ALGEBRA AND LOGIC GATES

Review of Number Systems – Arithmetic Operations – Binary Codes – Boolean Algebra and Theorems – Boolean Functions – Simplification of Boolean Functions using Karnaugh Map and Tabulation Methods – Logic Gates – NAND and NOR Implementations.

# UNIT II COMBINATIONAL LOGIC

Combinational Circuits – Analysis and Design Procedures – Circuits for Arithmetic Operations, Code Conversion – Decoders and Encoders – Multiplexers and Demultiplexers – Introduction to HDL – HDL Models of Combinational circuits.

# UNIT III SYNCHRONOUS SEQUENTIAL LOGIC

Sequential Circuits – Latches and Flip Flops – Analysis and Design Procedures – State Reduction and State Assignment – Shift Registers – Counters – HDL for Sequential Logic Circuits.

# UNIT IV ASYNCHRONOUS SEQUENTIAL LOGIC

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and Flow Tables – Race-free State Assignment – Hazards.

# UNIT V MEMORY AND PROGRAMMABLE LOGIC

RAM and ROM – Memory Decoding – Error Detection and Correction – Programmable Logic Array – Programmable Array Logic – Sequential Programmable Devices – Application Specific Integrated Circuits.

# LIST OF EXPERIMENTS

1. Verification of Boolean Theorems using basic gates.

2. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.

3. Design and implement Half/Full Adder and Subtractor.

4. Design and implement combinational circuits using MSI devices:

4 - bit binary adder / subtractor

Parity generator / checker

Magnitude Comparator

Application using multiplexers

- 5. Design and implement shift-registers.
- 6. Design and implement synchronous counters.
- 7. Design and implement asynchronous counters.
- 8. Coding combinational circuits using HDL.
- 9. Coding sequential circuits using HDL.

Witt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

TEXT BOOKS

1. M. Morris Mano, Michael D Ciletti, "Digital Design", 6th Edition, Pearson Education, 2018.

9

9

9

9

9

### REFERENCES

1. John F. Wakerly, "Digital Design Principles and Practices", Fourth Edition, Pearson Education, 2007.

2. Charles H. Roth Jr, "Fundamentals of Logic Design", Fifth Edition – Jaico Publishing House, Mumbai, 2003.

3. Donald D. Givone, "Digital Principles and Design", Tata Mcgraw Hill, 2003.

4. Kharate G. K., "Digital Electronics", Oxford University Press, 2010.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@ avit.ac.in
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.e du.in

N. Hitt

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.
35	921C82										Category	L	Т	P	Credit
55	/21002			Dł	CEP LE	CARNII	NG LA	В			CC	0	0	4	2
PREA	MBLE												II		
To pro deep le	vide an arning v	in-dept with sui	th knov table ju	vledge a stificati	about d ion.	eep lear	rning co	oncepts	and id	entify a	pplication	s suitable	for diff	erent t	pes of
PRER	EQUIS	ITE: N	IL												
COUR	SE OB	JECTI	VES												
1.	To stu	idy the	basics o	of mach	ine lear	ning, ne	eural ne	tworks	and dee	ep learn	ing				
2.	To stu	idy the	present	the mat	hemati	cal, stat	istical a	ind com	putatio	nal chal	lenges of	building 1	neural ne	etworks	
3.	To study the dimensionality reduction techniques         To know deep learning techniques to support real-time applications														
4.	To know deep learning techniques to support real-time applications														
5.	To examine the case studies of deep learning techniques														
COUR	OURSE OUTCOMES														
On the	In the successful completion of the course, students will be able to														
<b>CO1:</b> U	ndersta	nd basic	cs of de	ep learr	ning								Under	rstand	
CO2:In	nplemei	nt vario	us deep	learnin	ig mode	els							Ap	ply	
CO3:R	ealign h	igh din	nension	al data 1	using re	duction	technio	ques					Ap	ply	
CO4:U comput	ndersta ing tech	nd and and and and and and and and and a	apply so and tec	caling u hnologi	p mach es	ine lear	ning teo	chnique	es and a	ssociate	ed		Ap	ply	
<b>CO5</b> : <i>A</i>	Analyse	optimiz	zation a	nd gene	ralizati	on in de	ep lear	ning					Ap	ply	
MAPP	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES														
COs	Os PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
CO1	DI S L L L														
CO2	S	S	S	L	-	L	-	L	L	-	L	L	S	Μ	L
CO3	S	S	М	L	-	L	-	L	L	-	L	L	S	М	L
CO4	S	L	Μ	L	-	L	-	-	-	-	-	L	-	-	-
CO5	S	L	S	-	-	L	-	L	-	-	-	L	-	L	-
S- Stro	S- Strong; M-Medium; L-Low														

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## LIST OF EXPERIMENTS

- 1. Write a Python program to work on Theanos i) functions with scalars ii) functions with vectors iii) Functions with scalars and vectors iv) activation functions
- 2. Write a Python program for Single Layer Neural Network
- 3. Write a Python program for Two Layer Neural Network
- 4. Write a Python program for Multiclass Classification
- 5. Write a Python program for Regression with Keras
- 6. Write a Python program for Optimizers
- 7. Write a Python program for Activation Functions
- 8. Write a Python program for CNN using MNIST dataset
- 9. Write a Python program for LSTM model using IMDB dataset
- 10. Write a Python program for getting information on GPUs
- 11. Write a Python program for Vector Addition
- 12. Write a Python program for Matrix multiplication

#### **REFERENCE BOOKS:**

1. "Deep Learning with Python A Hands-on Introduction", Nikhil Kethkar, Apress, 2017.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Mrs. R Shobana	Assistant Professor (GII)	CSE / AVIT	shobana@avit.ac.in
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

359	921C83	3 MACHINE LEARNING LAB Category L T P Credit CC 0 0 4 2														redit
											CC	0	0	4		2
PREA To pro of mac	MBLE vide an hine lea	in-dept rning w	th know vith suit	/ledge a able jus	bout m tificatio	achine on.	learning	g conce	epts and	l identif	y applicat	ions suita	ble for	diffe	rent	types
PRER	EQUIS	ITE: N	IL													
COUR	SE OB	JECTI	VES													
1.	To stu	dy the	outline	the key	concep	ots of m	achine l	learning	g							
2.	To understand the supervised learning and classification techniques															
3.	To apply the concept of unsupervised learning and Clustering for applications															
4.	To infer theoretical and practical aspects of reinforcement learning															
COUR	DURSE OUTCOMES															
On the	the successful completion of the course, students will be able to															
<b>CO1:</b> C	O1: Outline the key concepts of machine learning Understand															
CO2: S	ummari	ize supe	ervised	learning	g and cl	assifica	tion tec	hnique	5			Understa	and			
<b>CO3:</b> U	Jndersta	ind the	concept	of unsu	upervise	ed learn	ing and	Cluste	ring for	applica	tions	Understa	and			
<b>CO4:</b> I	nfer the	oretical	and pra	actical a	spects	of reinf	orceme	nt learn	ing			Understa	and			
<b>CO5:</b> In	nfer the	oretical	and pra	actical a	spects	of reinf	orceme	nt learn	ing			Understa	and			
MAPP	'ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPH	ECIFIC C	UTCOM	IES			
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	l PS	02	PSO3
CO1	S	-	-	-	-	L	-	-	-	-	-	L	L	-		-
CO2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
CO3	S	S	М	L	-	L	-	L	L	-	L	L	S	Ν	1	L
<b>CO4</b>	S	L	Μ	L	-	L	-	-	-	-	-	L	-	-		-
CO5	CO5 S L S L - L - L - L - L -															
S-Stro	S-Strong; M-Medium; L-Low															

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

## LIST OF EXPERIMENTS

Design of experiments in Machine Learning Introduction to popular Machine Learning Datasets and Toolkits Face Recognition using PCA; Practical applications of clustering Experiments on Supervised classification using MLP, RBF, ANN, SVM and Decision Trees Applications of Classifiers Ensembles Sequence classification using HMM Applications of CNN and RNN Path planning with Reinforcement learning

## TEXT BOOKS

1. Ethem Alpaydin, Introduction to Machine Learning MIT Press, 2014.

### REFERENCES

- 1. Tom M Mitchell, Machine Learning, First Edition, McGraw Hill Education, 2013
- 2. Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction. MIT Press

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mai l ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr.K.Sasikala	Assistant Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35	35021C85 ARTIFICIAL INTELLIGENCE LAB Category L T P Credit													Credit	
	021005										CC	0	0	4	2
<b>PREAN</b> To gain	<b>IBLE</b> program	nming l	knowled	dge in A	Artificia	l Intelli	gence			L			<b>I I</b>		
PRERF NIL	QUISI	ТЕ													
COURS	SE OBJ	ECTIV	VES												
1.	The air knowle	m of Ar	tificial AI tech	Intellige nniques	ence is leading	to prep to the a	are stud advance	dents fo ement o	r careei f resear	r in com ch and t	puter scien echnology	nce & eng	gineerin	g where	;
2.	Artifici	al Intel	ligence	is the	terms o	f comp	uter sci	ence.							
3.	AI is th AI that	e learni provide	ing in w e systen	hich mann the ab	achine o ility to	can lear automa	n by its tically l	s own w learn an	ithout l d impro	being ex ove from	plicitly pr 1 experien	ogramme ce.	ed. It is a	an applio	cation of
4.	AI is th	e learni	ing in w	hich m	achine	can lear	rn by its	own w	ithout l	being ex	plicitly pr	ogramme	ed.		
COURS	SE OUT	ГСОМ	ES												
On the	success	ful com	pletion	of the c	course,	students	s will be	e able to	C						
CO1. I 8-puzzl	mpleme e,8-que	ent brea ens,Tra	dth firs velling	t, depth salespe	first an rson an	d best f d water	irst sear jug pro	rch tech oblems	nique f etc.	for probl	ems like	Apply			
CO2. In gaming	mpleme applica	nt hill c tions.	limbing	g, A* al	gorithm	n and ra	Indomiz	zed sear	ch tech	niques f	or	Apply			
CO3. A optimiz Optimiz	Apply Aption al zation.	pply De gorithn	evelop t ns like S	he solu Simulate	tions fo ed Anne	r comb ealing,	inatoria Genetic	l proble Algori	ems usi thm, Pa	ng intell article S	ligent warm	Apply			
CO4. 0	Construc	ct rule b	ased sy	stems f	or any a	applicat	ion usii	ng logic	progra	mming	language.	Apply			
MAPPI	NG WI	TH PR	ROGRA	AMME	OUTC	OMES	S AND ]	PROG	RAMM	IE SPE	CIFIC OU	UTCOM	ES	-	•
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	S	М	L	-	-	-	-	-	-	-	-	-	-	М
CO2.	S	S	М	М	L	-	-	-	-	-	-	-	-	-	М
CO3.	S	S	М	L	-	-	-	-	-	-	-	-	-	-	М
CO4.	S	S	М	L	-	-	-	-	-	-	-	-	-	-	М
S- Stron	ig; M-M	ledium;	L-Low	7	1	1	1	1	1			1	L	<u> </u>	

CHIH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

LIST OF EXPERIMENTS:

- 1. Implement Breadth First Search (for 8 puzzle problem or Water jug problem or any AI search problem)
- 2. Implement Depth First Search ( for 8-queen problem or 8 puzzle problem or Water jug problem or any AI search problem)
- 3. Solve travelling salesperson problem using Best First Search
- 4. Implement Hill climbing algorithm
- 5. Apply any one randomized search technique (Simulated annealing, Genetic Algorithms, Particle swarm optimization) for solving problems like, TSP, Graph coloring, Vertex cover problem, shortest path problems, etc.
- 6. Write a program to generate the output for A* algorithm.
- 7. Write a program to show the Tic Tac Toe game for 0 and X
- 8. Solve the crossword puzzle problem as constraint satisfaction problem
- 9. Implement anyone Propositional calculus related problem
- 10. Develop any rule based system for an application of your choice.
- 11. Generate, view and access decision tree and rules.
- 12. Implement a k-means clustering algorithm for any given data set.

### TEXT BOOKS

1. S. Russell and P. Norvig, "Artificial Intelligence – A Modern Approach", Second Edition, Pearson Education, 2015 Bratko, I., Prolog Programming For Artificial Intelligence (International Computer Science Series), Addison-Wesley Educational Publishers Inc; 4th Edition, 2011.

#### REFERENCES

1. David Poole, Alan Mackworth, Randy Goebel,"Computational Intelligence: A Logical Approach", Oxford University Press, 2004.

2. G. Luger, "Artificial Intelligence: Structures and Strategies For Complex Problem Solving", Fourth Edition, Pearson Education, 2002.

3. J. NILsson, "Artificial Intelligence: A New Synthesis", Elsevier Publishers, 1998.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.
2.	Dr.Nithya	Professor	CSE	nithya@vmkv.ac.in

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021C33       DATABASE MANAGEMENT SYSTEMS LAB       Category       L       I       P       Creation         35021C33       DATABASE MANAGEMENT SYSTEMS LAB       CC       0       0       4       2         PREAMBLE         CC       0       0       4       2         PREAMENT SYSTEMS LAB         CC       0       0       4       2         PREAMENT SYSTEMS LAB         CC       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>C-4</th><th></th><th>T</th><th>т</th><th>р</th><th>Crea 124</th></td<>									C-4		T	т	р	Crea 124		
PREAMBLE       CCC       0       0       4       2         This course aims at facilitating the student to apply the effective designing of relational databases or real-world applications, perform many operations related to creating, manipulating and maintaining databases using DBMS tools and manipulate data using other languages through ODBC and JDBC.         PREREQUISITE: NIL	35021C8	3 <b>I</b>	DATABAS	SE MAI	NAGEN	IENT S	YSTEM	IS LAB	Cale			1	Р 			
This course aims at facilitating the student to apply the effective designing of relational database for real-world applications, perform many operations related to creating, manipulating and maintaining databases using DBMS tools and manipulate data using other languages through ODBC and JDBC.           PREREQUISITE: NIL           COURSEOBJECTIVES           1.         To demonstrate the basic fundamentals of Structured Query Language (SQL).         2.           2.         To employ the conceptual and relational models to design large database systems.         3.           3.         To design and build database system for a given real world problems         Vertex of the successful completion of the course, students will be able to           COURSEOUTCOMES           On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.           CO2         Porelop onormalized and demoralized databases of a given application using various constraints like integrity and value constraints.         Analysis           CO3         Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.         Analysis           CO4         Peelop objects using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.           Manalysis           CO3 <t< td=""><td>PREAMBI</td><td>LE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td><td>U</td><td>4</td><td>2</td></t<>	PREAMBI	LE									U	U	4	2		
PREREQUISITE: NIL         COURSEOBJECTIVES         1.       To demonstrate the basic fundamentals of Structured Query Language (SQL).         2.       To employ the conceptual and relational models to design large database systems.         3.       To design and build database system for a given real world problems         COURSEOUTCOMES         On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.         Col         Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         COS       POI       PO2       PO3       PO6       PO7       PO8       PO9       POI0       PS02         CO1       M       M       Analysis         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         M<	This course applications tools and m	aims at f , perform anipulate	acilitating 1 many ope data using	the stud erations g other la	lent to aj related t anguage	oply the o creatin s throug	effectiv ng, mani h ODBC	e designi pulating C and JD	ng of rela and mair BC.	ational o ntaining	latabase databas	e for re ses usi	al- ng l	world DBMS		
COURSEOBJECTIVES         1.       To demonstrate the basic fundamentals of Structured Query Language (SQL).         2.       To employ the conceptual and relational models to design large database systems.         3.       To design and build database system for a given real world problems         COURSECUTCOMES         On the successful completion of the course, students will be able to         Manipulate relational databases using simple and complex queries in Structured Query Language.         Cont the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.         Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESAMMESPECIFICOUTCOMES         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02       PS02       PS01       PS02       PS03       PS02       PS03       PS04       PS05       S COS       S       M       M       M       Co       Co </td <td>PREREQU</td> <td>ISITE: 1</td> <td>NIL</td> <td></td>	PREREQU	ISITE: 1	NIL													
1.       To demonstrate the basic fundamentals of Structured Query Language (SQL).         2.       To employ the conceptual and relational models to design large database systems.         3.       To design and build database system for a given real world problems         COURSEOUTCOMES         On the successful completion of the course, students will be able to         On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.         CO2         Develop normalized and demoralized databases objects such as indices, sequences, synonyms using Structured Query Language.         CO3         Povelop objects using PL/SQL and manipulate databases through these objects         Analysis         Co4         Povelop objects using PL/SQL and manipulate databases through these objects         Analysis         Co4         OPVELOP objects using PL/SQL and manipulate databases through these objects         Analysis         Co4         OPVELOP objects using PL/SQL and manipulate databases through these objects         Analysis         Co5         PO1       PO2       PO3	COURSEC	BJECT	IVES													
2.       To employ the conceptual and relational models to design large database systems.         3.       To design and build database system for a given real world problems         COURSEOUTCOMES         On the successful completion of the course, students will be able to         On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.         Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.         CO2         Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.         CO3         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.         MAPPINGWTHENCORCRAMMESPECIFICOUTCOMES         CO1         M         ON         PO1       PO2       PO3       PO4       PO5       PO8       PO9       PO10       PS01       PS02       CO1       M       M       M       -       -       -       M       M       CO2       M       M       M       -       -       -       M <td>1.</td> <td>To demo</td> <td>onstrate the</td> <td>e basic f</td> <td>undame</td> <td>ntals of</td> <td>Structur</td> <td>ed Query</td> <td>Languag</td> <td>ge (SQL</td> <td><i>.</i>).</td> <td></td> <td></td> <td></td>	1.	To demo	onstrate the	e basic f	undame	ntals of	Structur	ed Query	Languag	ge (SQL	<i>.</i> ).					
To design and build database system for a given real world problems         COURSEOUTCOMES         On the successful completion of the course, students will be able to       Build and manipulate relational databases using simple and complex queries in Structured Query Language.         CO1       On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITTHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO4       PO1 <th co<="" td=""><td>2.</td><td>To empl</td><td>oy the con</td><td>ceptual</td><td>and rela</td><td>tional m</td><td>odels to</td><td>design la</td><td>arge data</td><td>base sys</td><td>stems.</td><td></td><td></td><td></td></th>	<td>2.</td> <td>To empl</td> <td>oy the con</td> <td>ceptual</td> <td>and rela</td> <td>tional m</td> <td>odels to</td> <td>design la</td> <td>arge data</td> <td>base sys</td> <td>stems.</td> <td></td> <td></td> <td></td>	2.	To empl	oy the con	ceptual	and rela	tional m	odels to	design la	arge data	base sys	stems.				
COURSEOUTCOMES         On the successful completion of the course, students will be able to         On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       MM         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES         CO5       PO1       PO2       PO3       PO4       PO10       PS01 <td>3.</td> <td>To desig</td> <td>gn and buil</td> <td>d databa</td> <td>ase syste</td> <td>m for a</td> <td>given re</td> <td>al world</td> <td>problems</td> <td>5</td> <td></td> <td></td> <td></td> <td></td>	3.	To desig	gn and buil	d databa	ase syste	m for a	given re	al world	problems	5						
On the successful completion of the course, students will be able to         On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO2       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       MAMM         MAPPINGWHTHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES         CO5       PO1       PO	COURSEC	OUTCON	1ES													
On the successful completion of the course, students will be able to Build and manipulate relational databases using simple and complex queries in Structured Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Develop normalized and demoralized database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO5       a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO3       M       M       -       -       -       -       -       M       M         CO3       M       M       -       -       -       -       M       M         CO4       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO3       M       M       M	On the succ	cessful co	mpletion	of the co	ourse, stu	idents w	ill be ab	le to								
CO1       manipulate relational databases using simple and complex queries in Structured Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWTTHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO1       M       M       M       -       -       -       M       M         CO3       M       M       M       -       -       -       M       M         CO4       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO3       M       M       -       -       -       -       M       M         CO3       M		On the	successfu	l comple	etion of	the cou	rse, stud	ents will	be able	to Buil	d and					
Query Language.       Apply         CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO5       a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO1       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -	CO1	manipu	anipulate relational databases using simple and complex queries in Structured Apply													
CO2       Develop normalized and demoralized databases for a given application using various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects such as indices.       Analysis         CO5       Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis       Analysis         CO3       P01       P02       P03       P04       P05       P06       P07       P08       P09       P010       PS01       PS02         CO1       M       M       M       -       -       -       M       M         CO2       M       M       M       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M <t< td=""><td></td><td>Query</td><td colspan="14">uery Language.</td></t<>		Query	uery Language.													
CO2       various constraints like integrity and value constraints.       Apply         CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO5       Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Mailysis       Analysis         CO3       P01       P02       P03       P04       P05       P06       P07       P08       P09       P010       PS01       PS02         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       - <td></td> <td>Develo</td> <td colspan="14">Develop normalized and demoralized databases for a given application using</td>		Develo	Develop normalized and demoralized databases for a given application using													
CO3       Construct and make use of database objects such as indices, sequences, synonyms using Structured Query Language.       Analysis         CO4       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         CO5       Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis         CO3       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO1       M       M       M       -       -       -       M       M         CO3       M       M       M       -       -       -       M       M         CO4       S       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       - <td>CO2</td> <td colspan="14">various constraints like integrity and value constraints. Apply</td>	CO2	various constraints like integrity and value constraints. Apply														
CO3       synonyms using Structured Query Language.       Analysis         C04       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         C05       Develop objects using PL/SQL and manipulate databases through these objects       Analysis         C05       Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES       Analysis         C05       P01       P02       P03       P04       P05       P06       P07       P08       P09       P010       PS01       PS02         C01       M       M       M       -       -       -       -       M       M         C02       M       M       M       -       -       -       -       M       M         C03       M       M       M       -       -       -       -       M       M         C03       M       M       M       -       -       -       -       M       M         C04       S       M       M       -       -       -       -       M       M       S       S	COL	Constru	act and n	nake us	e of da	atabase	objects	such as	s indices	, seque	ences,		1	•		
CO4Develop objects using PL/SQL and manipulate databases through these objectsAnalysisConstruct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.AnalysisMAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PSO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PSO1PSO2PO1MMCOSPO1PO3PO4POPO10PSO1PSO2CO1MMMMMMCO2MMMCO3MMMCO3MMMCO4SMMMSSCO5SMM <td>03</td> <td>synony</td> <td>ms using S</td> <td>Structure</td> <td>ed Query</td> <td>/ Langua</td> <td>age.</td> <td></td> <td></td> <td></td> <td></td> <td>A</td> <td>nary</td> <td>/\$1\$</td>	03	synony	ms using S	Structure	ed Query	/ Langua	age.					A	nary	/\$1\$		
Construct and make use of composite data types using PL/SQL (CO5) Develop a complete database application in a high level language using Java Database Connectivity.       Analysis         MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMES         COS       PO1       PO2       PO3       PO4       PO5       PO6       PO7       PO8       PO9       PO10       PS01       PS02         CO1       M       M       M       -       -       -       -       M       M         CO2       M       M       M       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       -       M       M         CO3       M       M       M       -       -       -       -       -       M       M         CO4       S       M       M       -       -       -       -       M       S         CO5       S       M       M       -       -       -       -       M       S       S       S	CO4	Develo	p objects ı	using PL	/SQL ai	nd manip	pulate da	itabases t	hrough th	nese obj	jects	A	naly	vsis		
CO5a complete database application in a high level language using Java Database Connectivity.AnalysisMAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PS01PS02CO1MMMMMCO2MMMMMMCO3MMMMMCO3MMMMMCO4SMMMMMCO4SMMMMS- Strong; M-Medium; L-LowIst OF EXPERIMENTSDr. M. NITHYA, - Prof & Head.Dr. M. NITHYA, - Prof & Head1.To write a query in Data Definition Language (DDL) commands in DBMSDBMSDr. M. K. V. Engg. College, Salem.DIM. K. V. Engg. College, Salem.		Constru	lict and ma	ike use o	of comp	osite dat	ta types	using PL	/SQL (C	O5) De	velop					
Connectivity.MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PS01PS02CO1MMMMMMCO2MMMMMMCO3MMMMMMCO3MMMMMMCO3MMMMMMCO3MMMMMMCO4SMMMMMCO5SMMMMMS- Strong; M-Medium; L-LowIST OF EXPERIMENTSDr. M. NITHYA, - Prof & Head.Prof & Head. - Of Computer Science & Enggs1.To write a query in Data Definition Language (DDL) commands in DBMSDr. M. NITHYA, - Prof & Head.Prof & Head. - Of Computer Science & Enggs2.To write a query in Data Manipulation Language (DML) commands in DBMSDBMSProf & Head.	CO5	a comp	olete datab	ase app	lication	in a hig	h level	language	e using Ja	ava Dat	abase	A	naly	vsis		
MAPPINGWITHPROGRAMMEOUTCOMESANDPROGRAMMESPECIFICOUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PS01PS02CO1MMMMMMCO2MMMMMMCO2MMMMMMCO3MMMMMMCO3MMMMMMCO3MMMMMMCO4SMMMMMCO4SMMMMMCO5SMMMMMS- Strong; M-Medium; L-LowMNITHYA,IST OF EXPERIMENTS1. To write a query in Data Definition Language (DDL) commands in DBMSOF. M. NITHYA, -Prof & Head. -Of Computer Science & Enggs2. To write a query in Data Manipulation Language (DML) commands in DBMSOf Computer Science & Enggs		Connec	ctivity.													
COSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PS01PS02CO1MMMMMMCO2MMMMMMCO3MMMMMMCO4SMMMMMCO5SMMMMSS- Strong; M-Medium; L-LowLIST OF EXPERIMENTS1.To write a query in Data Definition Language (DDL) commands in DBMSDr. M. NITHYA, - Prof & Head.2.To write a query in Data Manipulation Language (DML) commands in DBMSDr. M. NITHYA, - M.K. V. Engg. College, Salem.	MAPPING	WITHP	ROGRAN	<b>IMEOU</b>	JTCOM	IESANI	DPROG	RAMM	ESPECI	FICOU	TCOM	IES				
COIMMMMMMCO2MMMMMMMCO3MMMMMMCO4SMMMMMCO4SMMMMSCO5SMMMMSS- Strong; M-Medium; L-LowLIST OF EXPERIMENTSI. To write a query in Data Definition Language (DDL) commands in DBMSDr. M. NITHYA, - Prof & Head.2. To write a query in Data Manipulation Language (DML) commands in DBMSDR.M.K.V. Engg. College, Salem.	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSC	D1	PSO2		
CO2       M       M       M       M       -       -       -       -       -       M       M         CO3       M       M       M       M       -       -       -       -       -       M       M         CO3       M       M       M       M       -       -       -       -       -       M       M         CO4       S       M       M       M       -       -       -       -       -       M       M         CO5       S       M       M       M       -       -       -       -       -       M       S         CO5       S       M       M       M       -       -       -       -       -       M       S         S- Strong; M-Medium; L-Low       LIST OF EXPERIMENTS       Dr. M. NITHYA,       -       -       Prof & Head.       -       -       Prof & Head.       -       Prof & Head.       -       -       Prof & Leags       College, Salem.         2.       To write a query in Data Manipulation Language (DML) commands in DBMS       Dr. M. NITHYA,       -       -       -       M. M. N.K. V. Engg. College, Salem.       -         2. <td>CO1</td> <td>M</td> <td>M</td> <td>M</td> <td>M</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>M</td> <td>[</td> <td>M</td>	CO1	M	M	M	M	-	-	-	-	-	-	M	[	M		
CO3       M       M       M       M       -       -       -       -       -       M       M         CO4       S       M       M       M       -       -       -       -       M       M         CO4       S       M       M       M       -       -       -       -       M       S         CO5       S       M       M       M       -       -       -       -       M       S         S- Strong; M-Medium; L-Low       LIST OF EXPERIMENTS       Dr. M. NITHYA,       Prof & Head.       Prof & Head.       Prof & Head.         1.       To write a query in Data Definition Language (DDL) commands in DBMS       Dr. M. NITHYA,       Prof & Head.       Of Computer Science & Enggs         2.       To write a query in Data Manipulation Language (DML) commands in DBMS       Of Computer Science & Enggs       College, Salem.	CO2	M	M	M	M	-	-	-	-	-	-	M	[	M		
CO4       S       M       M       M       -       -       -       -       -       M       S         CO5       S       M       M       M       -       -       -       -       -       M       S         CO5       S       M       M       M       -       -       -       -       -       M       S         S- Strong; M-Medium; L-Low       LIST OF EXPERIMENTS       Dr. M. NITHYA,       -       -       M       A         1.       To write a query in Data Definition Language (DDL) commands in DBMS       Dr. M. NITHYA,       -       Prof & Head.         2.       To write a query in Data Manipulation Language (DML) commands in DBMS       Of Computer Science & Engg.       College, Salem.		M	M	M	M	-	-	-	-	-	-	M	r	M		
COS       S       M       M       M       -       -       -       -       M       M       S         S- Strong; M-Medium; L-Low       LIST OF EXPERIMENTS       Image: College and the constraints of the constraints of the constraint of	C04 C05	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
LIST OF EXPERIMENTS         1. To write a query in Data Definition Language (DDL) commands in DBMS         Dr. M. NITHYA,         Prof & Head.         2. To write a query in Data Manipulation Language (DML) commands in DBMS         Write a query in Data Manipulation Language (DML) commands in DBMS         Dr. M. NITHYA,         Of Computer Science & Enggs         Of Computer Sci	CO3	S 4-Mediur	m: L -L ow	М	М	-	-	-	-	-	-	it		MS		
<ol> <li>To write a query in Data Definition Language (DDL) commands in DBMS</li> <li>To write a query in Data Manipulation Language (DML) commands in DBMS, of Computer Science &amp; Engy</li> <li>To write a query in Data Manipulation Language (DML) commands in DBMS, M.K. V. Engg. College, Salem.</li> </ol>	LIST OF F	XPERIN	TENTS								0	d'				
<ol> <li>To write a query in Data Manipulation Language (DML) commands in DBMS. of Computer Science &amp; Engg</li> <li>To write a query in Data Manipulation Language (DML) commands in DBMS. Of Computer Science &amp; Engg</li> </ol>		write a cu	ierv in Dat	ta Defin	ition La	າດແລດຄູ (	DDL) c	ommand	s in DRM	IS	Dr. N	A. NIT	HY	A,		
	2. To	<ol> <li>To write a query in Data Manipulation Language (DML) commands in DBMS, M.K. V. Engg. College, Salem.</li> </ol>														

- 3. To write a query in Data Control Language (DCL) and Transfer Control Language (TCL) Commands in DBMS
- 4. To write a query in Inbuilt functions of SQL in DBMS
- 5. To write a query in Join operations and Set operations in DBMS
- 6. To write a query to illustrate the creation of Cursor
- 7. To write a query to illustrate the creation of Triggers
- 8. To write a query to illustrate the creation of Procedures and Functions
- 9. To write a query for Database design using Normalization functions
- 10. To design and implementation of a database application for Payroll Management System
- 11. To design and implementation of a database application for Report Generation
- 12. To design and implementation of a database application for Student Management System

#### **References:**

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, "Database System Concepts", Fourth Edition, Tata McGraw Hill, 2012.
- 2. Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fourth Edition, Addision weskey, 2002.
- 3. Raghu Ramakrishnan, "Database Management Systems", Third Edition, McGraw Hill, 2002.
- 4. Peter Rob and Corlos Coronel, "Database Systems Design, Implementation and Management, Fifth Edition, Thompson Learning, Course Technology, 2003.

#### Course Designers:

S.No	Name of the faculty	Designation	Department / Name of the College	Email Id
1	Ms. A. Kasthuri	Assistant Professor	CSE / VMKVEC	kasthuri@vmkvec.edu.in
2.	Dr.R.Jaichandran	Assistant Professor	CSE / AVIT	jaichandran@avit.ac.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

									Cat	egory	L	Т	Р		Credit
35021C8	32		DATA	A STR	UCTU	RES L	AB		(	C	0	0	4		2
PREAMI This labor searching	BLE ratory and so	enable orting a	s the st lgorith	udents ms.	clearly	under	stand t	he con	cepts o	f data st	ructures	. Also st	tudents	can imp	lement the
PRERQU NIL	JISIT	E													
COURSE	E OUI	COM	ES												
On the su	ccessf	ul com	pletion	of the	course,	studer	nts will	be able	e to						
CO1. De	CO1. Develop algorithms for the concepts of data structures.       Apply         CO2. Able to Apply and parting techniques.       Image: CO2 able to Apply and parting techniques.														
CO2. Abl	CO2. Able to Apply searching and sorting techniques														
CO3.Con appropriat	<b>CO3.</b> Construct implementations for Abstract Data Types (ADT) using appropriate Data Structures														
CO4.Asse	ess the	suitab	ility of	a data	structu	re to so	olve a p	oroblen	n, based	1					
on the tim	e and	space c	comple	xities o	of differ	rent op	eration	s on th	e			Analyze	,		
data struc	ture	4 . 1	41					and/an	a a1 a a4	~ ~					
as sub-pro	cedur	es.(CO	thins w 5)	/mcn us	se soru	ng, sea	ircning	and/or	selecti	on		Apply			
MAPPIN	G WI	TH PF	ROGR	AMMI	E OUT	COM	ES AN	D PRC	OGRAI	MME S	PECIFI	C OUT	COME	S	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1 M M M M											-	-	М	М	М
CO2	CO2         M         M         M         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -											-	М	М	Μ
CO3	М	М	S	М	-	I	-	I	-	I	I	-	М	Μ	М
CO4	S	М	М	М	-	-	-	-	-	-	-	-	М	М	S
CO5	S	М	Μ	Μ	-	-	-	-	-	-	-	-	Μ	М	S
S- Strong	S- Strong; M-Medium; L-Low														

## LIST OF EXPERIMENTS:

- 1. Exercises using Objects, Classes, Inheritance
- 2. Operator Overloading and Polymorphism
- 3. Array implementation of List Abstract Data Type (ADT)
- 4. Linked list implementation of List ADT
- 5. Cursor implementation of List ADT
- 6. Array implementations of Stack ADT
- 7. Linked list implementations of Stack ADT
- 8. Queue ADT
- 9. Search Tree ADT Binary Search Tree
- 10. Heap Sort
- **11.** Quick Sort

N. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## **REFERENCES:**

- **1.** Laboratory Reference Manual.
- **2.** Balaguruswami. E, "Programming in C", TMH Publications, 1997
- 3. Gottfried, "Programming with C", schaums outline series, TMH publications, 1997.
- 4. Mahapatra, "Thinking in C", PHI publications, 2nd Edition, 1998.
- 5. Subbura.R, "Programming in C", Vikas publishing, 1st Edition, 2000.

S.No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr. R. Jaichandran	Associate Professor	CSE / AVIT	jaichandran@avit.ac.in
2	Dr. M. Nithya	Prof & Head	CSE / VMKVEC	nithya@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

359	S5921P11 NEURAL NETWORKS Category L T P Credit														
									Ε	C-PS	3	0	0	3	
PREA This sy This sy This is Thus, t PRER NIL COUR	MBLE Allabus Ulabus Useful t his sylla EQUIS SE OB	is inter contain to how tobus fo ITE JECT	nded for ns intell represe cuses of IVES	the En igent ag nt know n to kno	gineeri: gent, K vledge a ow abou	ng stud nowled and in n at AI an	ents and ge Rep nachine d its coi	d enabl resenta learnin ncepts,	es then tion and g conta applica	n to lea d Mac in son tion.	an abou hine lea ne impo	t Artii arning rtant p	ficial Int , and appredictio	telligenc oplicatio n metho	e. n. d.
1.	To giv solvin world	ve an u g hard proble	nderstar real- ms	nding or	n the fu	ndamer	ntals of	non-tra	ditional	techn	ologies	and ap	oproache	es to	
2.	Funda ANN,	mental Fuzzy	ls of arti	ificial n solve ha	eural ne ard real	etworks -world	, fuzzy problen	sets and	ł fuzzy	logic a	and gen	etic al	gorithm	s. Use of	
3.	To giv proble	ve an o ems	verview	of Gen	etic alg	orithms	s and m	achine	learning	g techr	niques to	o solvi	ng hard	real-wo	rld
4.	To stu	ıdy abo	outAlgoi	rithm											
COUR	SE OU	TCON	/IES												
On the	success	ful cor	npletion	of the	course,	student	s will b	e able t	0						
<b>CO1:</b> I	dentify	the diff	erent ag	gent and	l its typ	es to so	lve the	problen	ns		Unders	tand			
CO2: K	Know ab	out the	e proble	m solvi	ng techi	nique in	n Artific	ial Inte	lligence	e	Apply				
CO3: C	Construc	t the n	ormal fo	orm and	represe	ent the l	knowled	lge			Apply				
<b>CO4:</b> I	dentify	the ext	ension of	of condi	tion pro	obabilit	y and he	ow to ap	pply in	the	Analyz	e			
real tim	eenviro	nment. e Infor	mation	Retrieva	al and S	Speech ]	Recogni	ition in	the real	_					
world p	roblems	3									Analyz	e			
MAPP	ING W	TTHF	KOGR	AMMI	S OUT(	COME	S AND	PROG	KAMI	VIE SH	'ECIFI		TCOM	ES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	1 P	012	PSO1	PSO2	PSO
CO1	S	М	L	-	-	-	-	-	-	-		L	S	S	Ν
CO2	S	M	L	-	-	-	-	-	-	-		L	M	S	N
CO3	S c	M c	S c	-	-	-	-	-	-	-		- M	S M	- M	M
CO4	S	M	M	-	-	-	-	-	-	-		-	M	S	M
S- Stro	ng; M-N	Mediur	n; L-Lo	W	L	1				1	I			1	

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### FUZZY SET THEORY

Introduction-Definition-History of Artificial Intelligence-Intelligent Agents-Types Of Agents-Problem Solving Approach To AI Problems-Problem Formulation

#### **OPTIMIZATION**

Problem Solving Methods-Search Strategies-Uninformed Search Strategies-Comparison of Uninformed earch Algorithms-Informed Search Strategies-Local Search Algorithms-Searching With Partial Information-Constraint Satisfaction Problem

#### NEURAL NETWORKS

Propositional Logic-First Order Predicate Logic-Prolog Programming-Unification-Forward Chaining- Backward Chaining-Ontological Engineering-Categories and Objects-Events-Mental Events and Mental Objects.

#### NEURO FUZZY MODELING

Conditional Probability-Joint probability, Prior Probability- Bayes Rule and Its Applications-Bayesian Networks- Inferences in Bayesian Networks- Morkov chain, Hidden Markov Models- Learning from Observation-Supervised Learning.

#### APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition – Inverse Kinematics Problems – Automobile Fuel Efficiency Prediction – Soft Computing for Color Recipe Prediction.

### **TEXT BOOKS**

1.J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2011

### REFERENCES

Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.

DavisE.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.

S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence - PC Tools", AP Professional, Boston, 2005.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr.S.Senthil kumar	Assistant Professor	CSE / VMKVEC	senthilkumars@vmkvec.edu.in

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350	921205		HU	MAN	COMP	UTER	INTEF	RACTI	ON	Ca	tegory	L	Т	Р	C	redit
	5211 05									E	C-PS	3	0	0		3
PREA	MBLE												II			
Humar	n-Comp	uter Int	eraction	n (HCI)	is a mu	ıltidisci	plinary	field of	study	y con	centrat	ing on th	e plan	of P	C inn	ovation
specifi	cally, th	e assoc	ciation b	etween	people	(the us	ers) and	1 PCs. V	While	at fir	st wori	ried abou	ıt PCs,	HCI	has s	ince
extend	ed to co	ver all	types of	data ir	novatio	on plan.	,									
PRER	EQUIS	ITE														
COUR	RSE OB	JECT	IVES													
1	Term	(1 f		6 11.				-4:								
1.	Learn	the fol	indatior	is of Hu	lman C	ompute	r Intera	ction								
2.	Be far	niliar v	with the	design	technol	ogies fo	or indiv	iduals a	ind pe	ersons	with d	lisabilitie	es			
3.	Be aw	vare of	mobile	HCI												
4.	To lea	rn the	mobile	human	comput	er inter	action									
5.	Learn	the gu	idelines	for use	r interfa	ace										
COUR	RSE OU	TCON	/IES													
On the	success	ful cor	npletion	of the	course,	student	ts will b	e able t	0							
CO1: (	Jndersta	ind the	foundat	ions of	human	compu	ter inter	action					Unde	rsta	nd	
CO2: U human	Understa	ind fun er inter	damenta action a	al desig ind its a	n and e	valuatio ion.	on Meth	nodolog	ies of				Ap	ply		
<b>CO3:</b> U	Jndersta	nd the	models	and the	ories of	f HCI a	nd appl	ication.					Ar	ply		
<b>CO4:</b> [	Demonst	rate kr	owledg	e of hui	nan coi	mputer	interact	ion des	ign co	oncep	ts					
andrela	ted metl	nodolo	gies and	lapplica	ation.								Ар	ріу		
CO5: A	Apply th	eories	and con	cepts as	ssociate	d with	effectiv	e work	desig	n to r	eal		Ap	ply		
world a	Id application and web interface design and application.															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	9	10	11	PO12	PSO	1 F	SO2	PSO3
CO1	S	Μ	L	-	Μ	М	-	Μ	-	-	-	Μ	S		S	S
CO2	S	S	S	-	М	L	-	L	-	-	-	M	S	_	S	Μ
CO3	S	S	S	-	M	M	-	M	-	-	-	M	S		S	<u>S</u>
CO4	S	S	S	-	M	M	-	M	-	-	-	<u>M</u>	M	_	-	Μ
CU5		Madium		-	M	М	-	М	-	-	-	M	M		M	-
5- Stro	ng; M-N	viediun	u; L-L0	W							P	tor.	lag van			
											C	/				

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

### FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity-Paradigms.

#### **DESIGN & SOFTWARE PROCESS**

Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation Techniques – Universal Design.

#### MODELS AND THEORIES

Cognitive models –Socio-Organizational issues and stake holder requirements –Communication and collaboration models-Hypertext, Multimedia and WWW.

#### **MOBILE HCI**

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.

#### WEB INTERFACE DESIGN

Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.

### **TEXT BOOKS**

1. Alan Dix, Janet Finlay, Gregory Abowd, Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004 (UNIT I, II & III)

2. Brian Fling, "Mobile Design and Development", First Edition, O"Reilly Media Inc., 2009 (UNIT-IV)

#### REFERENCES

1. Bill Scott and Theresa Neil, "Designing Web Interfaces", First Edition, O"Reilly, 2009.(UNIT-V).

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@avit.ac.in
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

350	271P25									Cate	gory	L	Т	P	Cr	edit
555	21125		NAT	URAL	LANG	GUAGE	E PROC	CESSIN	IG –	EC	-PS	3	0	0		3
PREA	MBLE															
This co	ourse wi	ill cove	r the te	chnique	es, mod	lels, and	d algori	thms th	at ena	ble con	nputers	to deal	withth	e an	nbiguity	and /
implici	t structu	are of n	atural l	anguag	e. The	comput	ational	and ling	guistic	aspects	of natu	ral langu	age wi	ill b	e dealt	with.
How K	Inowled	ge will	be extr	acted fr	om uns	structur	ed text l	by iden	tifying	referer	ices to	named er	ntities	as v	vell as s	stated
relation	nships b	etween	such er	ntities w	vill be t	aught.										
<b>PRER</b> NIL	EQUIS	ITE														
COUR	SE OB	JECTI	VES													
1.	To intro	oduce tl	ne funda	amental	s of La	nguage	process	ing from	m the a	algorith	mic vie	ewpoint.				
2.	To discuss various issues those make natural language processing a hard task.															
3.	To disc	uss son	ne appli	cations	of Natu	ıral Lar	iguage I	Process	ing (N	LP).						
COUR	SE OU	TCOM	IES													
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0							
<b>CO1:</b> L	Jndersto	od the	Fundan	nental c	oncepts	s of NL	P Proce	essing.			U	Jnderstan	d			
CO2: U	Jndersto	od the	algorith	ım desig	gn forN	LP task	as and a second s				U	Jnderstan	d			
CO3:S	ystems f	for lang	uage pi	ocessin	ig and r	elatedta	sks inv	olving t	ext pro	ocessing	g A	pply				
MAPP	ING W	TTH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAM	ME SP	ECIF	IC OUT	COMI	ES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PS	01	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	М	S		S	М
CO2	S	М	L	-	-	-	-	-	-	-	-	М	N	[	S	Μ
CO3	S	М	S	-	-	-	-	-	-	-	-	-	S		-	Μ
S-Stro	ng; M-N	Medium	n; L-Lov	W												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

### INTRODUCTION

Introduction to Natural Language Understanding- Levels of language analysis- Syntax, Semantics, ragmatics.Linguistic Background- An Outline of English Syntax

## LEXICONS

Lexicons, POS Tagging, Word Senses. Grammars and Parsing- Features, Agreement and Augmented Grammars.

### SEMANTICS AND LOGICAL FORM

Linking Syntax and SemanticsAmbiguity Resolution- other Strategies for SemanticInterpretation- Scoping and the Interpretation of NounPhrases.

### KNOWLEDGE REASONING AND REPRESENTATION

Local DiscourseContext and Reference- Using World Knowledge- DiscourseStructure- Defining a Conversational Agent.

#### APPLICATIONS

Machine Translation, Information Retrievaland Extraction, Text Categorization and Summarization

### **TEXT BOOKS**

**1.** James Allen, Natural Language Understanding, The Benjamin/Cummings Publishing Company Inc., Redwood City, CA.

2. D. Jurafsky and J. H. Martin, Speech and Language Processing, Prentice Hall India.

### REFERENCES

1. Charniak, Eugene, Introduction to Artificial intelligence, Addison-Wesley.

2. Ricardo Baeza-Yates and BerthierRibeiro-Neto, Modern Information Retrieval, AddisonWesley, 1999.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	V.Amirthalingam	Assistant Professor	CSE / VMKVEC	amirthalingam@vmkvec.edu.in

350	971P17										Category	L	Т	P	C <b>redi</b>
	5211 12				REINI	FORCE	EMENI	T LEAH	RNING		EC-PS	3	0	0	3
PREA	MBLE														
Sequer	ntial dec	ision-n	naking i	is one c	of the n	najor to	pics in	machin	e learni	ng. Fro	m experie	nce, the t	ask is t	o decide	e the
sequen	ce of ac	ctions t	o perfo	rm in a	n uncer	rtain en	vironm	ent in c	order to	achiev	e some go	als that 1	may not	necess	arily
seem b	peneficia	ıl in ne	ar futu	re but a	ire opti	mal for	getting	; better	long te	rm rew	ard. Reinf	orcement	t learnii	ng (RL)	is a
paradig	gm that	propos	es a for	mal fra	mewor	k to thi	s proble	em. The	$a_1 m of$	t the co	urse will t	be to fam	illiarize	the stuc	lents
with th	ne basic	conce	pts as v	vell as	with th	e state-	-of-the-	art rese	arch lit	erature	in deep ro	einforcen	nent lea	rning. A	After
	orithms	for sin	its will	De able	docisio	structur	e a rein	lorcem	uncort	ning pro	oblem, (b)	ovoluoto	the por	appiy o	asic
the solu	algorithms for simple sequential decision making problems in uncertain conditions. (c) evaluate the performance of solution (d) interpret state-of-the-art RL research and communicate their results.														
PRER	solution (d) interpret state-of-the-art RL research and communicate their results.														
NIL															
COUR	URSE OBJECTIVES														
1.	To introduce the fundamentals of Reinforcement Learning system that knows how to make automated decisions														
2.	2. To understand how RL relates to and fits under the broader umbrella of machine learning, deep learning, supervised and unsupervised learning														
3.	To unde	erstand	how to	formal	ize you	r task as	s a RL p	oroblem	, and h	ow to be	egin imple	menting a	a solutio	on.	
COUR	<b>SE OU</b>	TCOM	IES												
On the	SUCCESS	ful con	nletion	of the	course	student	s will h	e ahle t	0						
	success		pretion		course,	student	.5 WIII 0		0			[			
<b>CO1:</b> U	Jndersto	od <b>F</b> ur	ndament	tals of <b>F</b>	Reinford	cement	Learnin	ig syste	m that 1	knows h	low to	Underst	and		
make a	utomate	d decis	ions												
CO2: F	RL relate	es to an	d fits u	nder the	broade	er umbr	ella of 1	nachine	e learnii	ng, deep	learning,	Underst	and		
supervi	sed and	unsupe	rvised l	learning	5							Chiefbu	und		
СО3: Т	o under	stand h	now to f	ormaliz	e your	task as	a RL pi	oblem,	and ho	w to beg	gin	Underst	and		
implem	enting a	solutio	on.		•										
MAPP	PING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPE	ECIFIC O	UTCOM	IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PS 03
CO1	S	М	Μ	-	-	-	-	-	-	-	-	М	S	S	Μ
CO2	S	Μ	Μ	-	-	-	-	-	-	-	-	М	Μ	S	Μ
CO3	S	Μ	S	-	-	-	-	-	-	-	-	М	S	-	Μ
S- Stro	ng; M-N	Aediun	n; L-Lov	W											

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## SYLLABUS INTRODUCTION

Course logistics and overview. Origin and history of Reinforcement Learning research. Its connections with other related fields and with different branches of machine learning. Probability Primer : Brush up of Probability concepts - Axioms of probability, concepts of random variables, PMF, PDFs, CDFs, Expectation. Concepts of joint and multiple random variables, joint, conditional and marginal distributions. Correlation and independence.

### MARKOV DECISION PROCESS

Introduction to RL terminology, Markov property, Markov chains, Markov reward process (MRP). Introduction to and proof of Bellman equations for MRPs along with proof of existence of solution to Bellman equations in MRP. Introduction to Markov decision process (MDP), state and action value functions, Bellman expectation equations, optimality of value functions and policies, Bellman optimality equations.

## PREDICTION AND CONTROL BY DYNAMIC PROGRAMMING

Overiew of dynamic programing for MDP, definition and formulation of planning in MDPs, principle of optimality, iterative policy evaluation, policy iteration, value iteration, Banach fixed point theorem, proof of contraction mapping property of Bellman expectation and optimality operators, proof of convergence of policy evaluation and value iteration algorithms, DP extensions.

### MONTE CARLO METHODS FOR MODEL FREE PREDICTION AND CONTROL

Overiew of Monte Carlo methods for model free RL, First visit and every visit Monte Carlo, Monte Carlo control, On policy and off policy learning, Importance sampling. TD Methods: Incremental Monte Carlo Methods for Model Free Prediction, Overview TD(0), TD(1) and TD( $\lambda$ ), k-step estimators, unified view of DP, MC and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants.

### FUNCTION APPROXIMATION METHODS

Getting started with the function approximation methods, Revisiting risk minimization, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD(0) algorithms, Eligibility trace for function approximation, Afterstates, Control with function approximation, Least squares, Experience replay in deep Q-Networks. Policy Gradients: Getting started with policy gradient methods, Log-derivative trick, Naive REINFORCE algorithm, bias and variance in Reinforcement Learning, Reducing variance in policy gradient estimates, baselines, advantage function, actor-critic methods

### **TEXT BOOKS**

Reinforcement Learning: An Introduction", Richard S. Sutton and Andrew G. Barto, 2nd Edition Probability, Statistics, and Random Processes for Electrical Engineering", 3rd Edition, Alberto Leon-Garcia. Machine Learning: A Probabilistic Perspective", Kevin P. Murphy

## REFERENCES

Richard S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, Second edition, MIT Press, 2018 COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr.S.Rajaprakash	Associate Professor	CSE / AVIT	rajaprakash@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkv.edu.in

												-			
37	021P02	]	INTEL	LIGE	NT DA	ATABA SYSTE	ASE M MS	(ANA(	GEME	NT	Categor	y L	T	P	Credit
DDD	MDI	<u> </u>				JIJIE					EC-PS	5	U	U	3
PREA This c	MBL	E will on	war tha	toohni		rollol o	nd diate	ibutad	databaa	a intall	igant data	base of	ionaa ta	ahnalaa	ion of
databa	se for	real tin	ne annli	cations	jues pa	ng tem	nu uisu poral da	IDUIEU (	ualabas manage	e, inten	igeni uala	idase, auv	ance te	cimolog	les of
Gataba	150 101	icai tii	ne appn	cations	menuui	ing tem	porarua	nabase .	manage	ment s	stems.				
PREF	REQU	ISITE													
NIL															
COU	RSE C	)BJEC	TIVES												
<b>1.</b> T	o acqu	uire kno	owledge	on par	allel an	d distrit	outed da	tabases	and the	eir appl	ications.				
2 T	r buts o'	v the u	sage and	1 annlic	eations (	of Ohie	ct Orien	ited and	Intellio	vent dat	ahases				
2. 1	lo und	oratand	the year		luonaad	l doto m			i intenite	Sent dat	ubuses				
<b>5.</b> 1			the usa				Claud a	nd Dia	Data						
4 1	o lear	n emerg	ging dat	abases	such as	AML,	$\frac{1}{1}$	ind Big	Data.						
5 1	To acquire inquisitive attitude towards research topics in databases.														
	RSE C	DUTCC	<b>JMES</b>												
On the		essful c	ompleti	on of th	e cours	e stude	ents will	be able	e to						
	bacee		ompien		e e o arb	<b>0,</b> 51440			6 10						
CO1:	develo	p in-de	pth und	erstand	ing of r	elationa	al datab	ases an	d skills	to optir	nize	Understa	and		
databa	se perf	formand	ce in pra	actice.	-					-					
CO2:	under	stand a	nd critic	ue on e	each typ	e of da	tabases.					Understa	and		
		0										- indefibit			
CO3:1	Design	taster a	algorith	ms in so	olving p	oractica	l databa	se prob	lems.			Understa	and		
CO4:In	nplem	ent inte	elligent	databas	es and v	various	data mo	odels.				apply			
												аррту			
CO5:V	arious	emerg	ing tech	nology	based of	latabase	es.					understa	and		
MAP	PING	WITH	PROG	RAM	ME OU	тсом	IES AN	D PRC	GRAN	AME S	PECIFIC		MES		
		***						DIKC				00100		1	
COs		PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	М	м									М	S	S	M
$\frac{cor}{cor}$	5	M	M									M	M	S S	M
CO2	S	M	2	_	_	_	_	_	_	_	_	M	S S	-	M
C03	5	141	2	_	_	_		_		_		TAT	5		141
C05													<u> </u>		
S- Str.	$\int \mathbf{n} \boldsymbol{\sigma} \cdot \mathbf{N}$	l I-Medi	l um∙ I ₋I	OW										1	
່ວ-ວມ	ong, w	I IVICUI	um, L⁻L	10 W											

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## PARALLEL AND DISTRIBUTED DATABASES

Database System Architectures: Centralized and Client-Server Architectures – Server System Architectures – Parallel Systems- Distributed Systems – Parallel Databases: I/O Parallelism – Inter and Intra Query Parallelism – Inter and Intra operation Parallelism – Design of Parallel Systems- Distributed Database Concepts - Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing – Case Studies.

## **OBJECT AND OBJECT RELATIONAL DATABASES**

Concepts for Object Databases: Object Identity – Object structure – Type Constructors – Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance – Complex Objects – Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems: Object Relational features in SQL/Oracle – Case Studies.

#### INTELLIGENT DATABASES

Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications- Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases- TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules-Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types- Spatial Relationships- Spatial Data Structures- Spatial Access Methods- Spatial DB Implementation.

#### ADVANCED DATA MODELS

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models -Concurrency Control - Transaction Commit Protocols- Multimedia Databases- Information Retrieval- Data Warehousing- Data Mining- Text Mining.

#### **EMERGING TECHNOLOGIES**

XML Databases: XML-Related Technologies-XML Schema- XML Query Languages- Storing XML in Databases-XML and SQL- Native XML Databases- Web Databases- Geographic Information Systems- Biological Data Management-Cloud Based Databases: Data Storage Systems on the Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages- Introduction to Big Data-Storage-Analysis.

### **TEXT BOOKS**

1. Ramez Elmasri, Shamkant B. Navathe, —Fundamentals of Database Systems, Sixth Edition, Pearson, 2011.

2. Thomas Cannolly and Carolyn Begg, —Database Systems, A Practical Approach to Design, Implementation and Management, Fourth Edition, Pearson Education, 2008.

### REFERENCES

1. Henry F Korth, Abraham Silberschatz, S. Sudharshan, —Database System Concepts^I, Sixth Edition, McGraw Hill, 2011.

2. C.J.Date, A.Kannan, S.Swamynathan, —An Introduction to Database Systems, Eighth Edition, Pearson Education, 2006.

3. Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T.Snodgrass, V.S.Subrahmanian, Roberto Zicari, —Advanced Database Systems, Morgan Kaufmann publishers,2006.

#### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. M. Adimoolam	Professor	CSE / AVIT	adimoolam.cse@avit.ac.in
2.	Dr.M. Nithya	Professor	CSE / VMKVEC	nithya@vmkv.edu.in

CAL

350	221010		KN	OWLI	EDGE	BASEI	) DECI	ISION			Categor	y L	Т	Р	Credit
	521110			SU	<b>PPOR</b>	Г SYS1	ſEM				EC-PS	3	0	0	3
PREA The pur	PREAMBLE The purpose of this course is to impart knowledge on decision support systems and implementation. PREREQUISITE														
PRER NIL	EQUIS	ITE													
COUR	SE OB	JECTI	VES												
1.	To fai	miliariz	e decisi	on supp	oort sys	tems an	d their	charact	eristics						
2.	To stu	idy abo	ut Intell	igent D	SS and	applica	ations o	f DSS							
3.	To lea	arn Coll	aborati	ve Com	puting '	Techno	logies								
4.	To lea	arn the t	echnolo	ogies re	lated to	decisio	on supp	ort syste	ems						
5.	To lea	arn Elec	tronic (	Comme	rce and	Manag	ement-	Support	t Systen	ns.					
COUR	COURSE OUTCOMES														
On the	success	sful con	pletion	of the	course,	student	s will b	e able t	0						
<b>CO1:</b> U	Jndersta	and deci	sion ma	aking aı	nd comp	outerize	ed supp	ort				Understa	and		
CO2: U	Jndersta	and Bus	iness In	telligen	ice ,Dat	a Ware	housing	g and D	ata Min	ing		Understa	and		
CO3: U	Jndersta	and and	apply (	Collabo	ration,	Commu	inicatio	on, Ente	rprise D	Decision		Apply			
<b>CO4</b> : U	Indersta	ind and	apply A	rtificia	l Intelli	gence a	nd Exp	ert Syst	ems ov	er the In	ternet.	Apply			
CO5: U	Jndersta	and and	apply E	Electron	ic Com	merce a	and Ma	nageme	nt-Supp	port Syst	ems.	Apply			
MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	RAMN	ME SPE	CIFIC (	DUTCO	MES		
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO10</b>	PO11	PO12	PSO1	PSC	2 <b>PSO3</b>
CO1	S	M	S	Μ	L	-	-	-	-	-	-	Μ	S	M	M
CO2	M	S	S	S	M	-	-	-	-	-	-	M	M	M	M
CO3	S	M	S	M	M	-	-	-	-	-	-	M	M	-	<u>M</u>
<u>CO4</u>	S	M	S	S	M	-	-	-	-	-	-	Μ	S		S
CO5		M	M	Μ	8	-	-	-	-	-	-	-	М	M	-
S- Stro	S- Strong; M-Medium; L-Low,														

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

### DECISION MAKING AND COMPUTERIZED SUPPORT

Management Support Systems: An Overview - Decision Making, Systems, Modeling, and Support.

#### **DECISION SUPPORT SYSTEMS**

Decision Support Systems: Overview - Modeling and Analysis – Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analysis, and Visualization - Decision Support System Development.

#### COLLABORATION, COMMUNICATION, ENTERPRISE DECISION

Collaborative Computing Technologies: Group Support Systems -Enterprise Information Systems - knowledge Management.

#### EVIDENCE COLLECTION AND FORENSICS TOOLS

Artificial Intelligence and Expert Systems: Knowledge-Based System – Knowledge Acquisition, Representation, and Reasoning - Advanced Intelligent Systems - Intelligent Systems over the Internet.

#### IMPLEMENTING IN THE E-BUSINESS ERA

Electronic Commerce - Integration, Impacts, and the Future of the Management-Support Systems.

## **TEXT BOOKS**

1. Efraim Turban, Jay Aronson E., Ting-Peng Liang, "Decision Support Systems and Intelligent Systems", 7th Edition, Pearson Education, 2013.

#### REFERENCES

**1.**Michel R. Klein and Leif B. Methlie, "Knowledge-Based Decision Support Systems With Applications in Business", , Wiley; 2nd edition

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	K.Karthik	Assistant Professor	CSE / AVIT	karthik@avit.ac.in
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in

W.Hith.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

359	921P14		V	/IRTU	ALIZA	TION	TECH	NIQUE	ES	(	Category	L	Т	Р	Cred	it
											EC-PS	3	0	0	3	
PREA This sy	<b>PREAMBLE</b> This syllabus is intended for the Engineering students and enable them to understand the basics virtualization and virtual machines															
PRER	EOUIS	TTE	•													
NIL																
COUR	SE OB	JECI	IVES													
1.	To un	dersta	nd the co	oncepts	of virtu	alizatio	on and v	rirtual n	nach	ines	5					
2.	To un	dersta	nd the in	nplemer	ntation	of proce	ess and	system	virt	ual	machines					
3.	To ex	plore t	he aspec	ts of hi	gh level	l langua	ige virti	ual mac	hine	es						
4.	To ga	in exp	ertise in	server,	networl	k and st	orage v	irtualiz	atio	n						
5.	To un	dersta	nd and d	eploy p	ractical	virtual	ization	solutior	ns ar	nd e	nterprise s	solution	IS			
COUR	SE OU	TCO	MES													
On the	success	sful co	mpletior	of the	course	student	s will h	e able t	0							
	succes		mpietioi			studen	.5 0111 0		.0			Annly				
<b>CO1:</b> I	nstall ai	nd con	figure vi	rtualiza	tion tec	hnolog	y such a	as VMv	vare			-PP-J				
CO2: C or ESxi	Configu	re and	manage	virtual	networl	c and st	orage s	uch as v	vCer	nter	server	Apply				
<b>CO3:</b> [	Deploy.	manag	e and m	igrate v	irtual m	achine	s.					Apply				
<b>CO4:</b> [	Describe	the a	chitectu	re of a l	Data Ce	enter en	vironm	ent with	ı RA	AID	and	FF-J				
Intellige	ent System	าต										Apply				
CO5: (	onfigu	re and	manage	a Stora	ge Area	Netwo	ork (SA)	(V)				Annly				
MAPP	ING W	/ITH	PROGR			COME	S AND	PROG	GRA	MN	AE SPEC	FIC C	OUTC	COME	S	
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	Р	Р	PO11	PO12	Р	<b>SO1</b>	PSO	P
									0	0					2	S
CO1	)1 S M S M S															
CO2	S	M	L	-	М	-	-	-	-	-	-	L	-		M	_
CO3	S	S	M	-	-	-	-	-	-	-	-	М	S		-	Μ
CO4	S	S	L	-	-	-	-	-	-	-	-		-		Μ	-
CO5	S	Μ	L	-	L	-	-	-	-	-	-	L	Ν	1	-	S
S- Stro	ng; M-l	Mediu	m; L-Lo	W												

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## **OVERVIEW OF VIRTUALIZATION**

System architectures - Virtual Machine basics - Process vs System Virtual Machines - Taxonomy. Emulation: Basic Interpretation - Threaded Interpretation - Precoded and Direct Threaded Interpretation - Binary Translation. System Virtual Machines - Key concepts - Resource utilization basics.

### PROCESS VIRTUAL MACHINES

Implementation – Compatibility – Levels – Framework – State Mapping – Register – Memory Address Space – Memory Architecture Emulation – Memory Protection – Instruction Emulation – Performance Tradeoff - Staged Emulation – Exception Emulation – Exception Detection – Interrupt Handling – Operating Systems Emulation – Same OS Emulation – Different OS Emulation – System Environment

### HIGH LEVEL LANGUAGE VIRTUAL MACHINES AND SERVER VIRTUALIZATION

HLL virtual machines: Pascal P-Code – Object Oriented HLLVMs - Java VM architecture - Java Native Interface - Common Language Infrastructure. Server virtualization: Partitioning techniques - virtual hardware - uses of virtual servers - server virtualization platforms.

## NETWORK AND STORAGE VIRTUALIZATION

Design of Scalable Enterprise Networks – Layer2 Virtualization – VLAN - VFI - Layer 3 Virtualization – VRF - Virtual Firewall Contexts - Network Device Virtualization - Data- Path Virtualization - Routing Protocols. Hardware Devices – SAN backup and recovery techniques – RAID – Classical Storage Model – SNIA Shared Storage Model – Virtual Storage: File System Level and Block Level.

### APPLYING VIRTUALIZATION

Multi-threaded programming – interrupting threads – thread states – thread properties – thread synchronization – Executors – synchronizers – Socket Programming – UDP Datagram – Introduction to Java Beans.

## TEXT BOOKS

**1.**Cay S. Horstmann and Gary Cornell, "Core Java: Volume I – Fundamentals", Eighth Edition, Sun Microsystems Press, 2008.

### REFERENCES

**1.** James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann,2005.

**2.** David Marshall, Wade A. Reynolds, "Advanced Server Virtualization: VMware and Microsoft Platform in the Virtual Data Center", Auerbach Publications,2006.

3. Kumar Reddy, Victor Moreno, "Network virtualization", Cisco Press, July, 2006.

4. Chris Wolf, Erick M. Halter, "Virtualization: From the Desktop to the Enterprise", APress2005.

**5.** Kenneth Hess, Amy Newman, "Practical Virtualization Solutions: Virtualization from the Trenches", Prentice Hall, 2010.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@avit.ac.in
2.	R.Bharanidharan	Professor	CSE / VMKVEC	bhararidharan@vmkvec.edu.in

35	921P07	7	IJ	ντροι	пісті	ίων τα	יחסח נ	NES			Categor	y L	Т	Р	Credit
			11	NIKU	DUCI		J DKOľ	NES			EC-PS	5 3	0	0	3
PREA	MBL	E								I		1			
This	course	provid	es hand	ls on ex	perient	ce on de	esign, fa	brication	n and fl	ying of U	JAV cat	egory ai	rcraft.	Students	s will get
in-de	pth ski	ll set or	ı desigr	n and fa	bricatio	on techr	niques of	f UAV s	uch as o	drones.					
PRER NIL	rkekevuisite NIL Course or hecting														
COUH	COURSE OBJECTIVES														
I.         To be able to describe common components of drone															
2.	2. To be able to define acronyms related to drone														
COU	COURSE OUTCOMES														
On the	succe	ssful co	mpletio	on of th	e cours	e, stude	ents will	be able	to						
CO1: Describe the parts and functions of UAV & Indian Aviation regulations of UAV Understand															
CO2: Aircra	Expla fts	in the c	oncepts	s of Aer	odynar	nics, Pr	opulsior	n & Stru	ctures c	of Model			Und	erstand	
CO3:	Descri	ibe the	working	g princi	ple and	l compo	onents of	f UAV					Und	erstand	
CO4:	Demo	nstrate	the des	ign pro	cess of	UAV							Α	pply	
CO5:	Demo	nstrate	design,	fabrica	tion an	d Flyin	g of UA	V					Α	pply	
MAPI	PING	WITH	PROG	RAMN	IE OU	тсом	ES ANI	D PROC	GRAM	ME SPE	CIFIC (	OUTCO	MES		
Cos	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	S	М	-	-	S	S	-	-	-	S	-	-
CO2	S	-	S	S	-	-	-	S	S	-	-	-	-	М	-
CO3	S	-	S	S	-	-	-	S	S	-	-	-	-	М	-
CO4 S S S S S S								-							
CO5	CO5 S S S S S S														
S- Stro	S- Strong; M-Medium; L-Low														

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## BASICS OF FLIGHT

Different types of flight vehicles - Components and functions of an airplane - Forces acting on Airplane - Physical properties and structure of the atmosphere - Aerodynamics –Airfoil nomenclature -aerofoil characteristics - Angle of attack, Mach number- Lift and Drag - Propulsion and airplane structures.

## UNMANNED AERIAL VEHICLE

Difference between aircraft and UAV - Parts and functions of Fixed, Rotorcraft and flapping wing UAV – various History of UAV's, Types of Drones, Applications and Uses. Characteristics of Multi rotor vehicle, Fixed Wing vehicle, Flapping wing Vehicles and their applications – Defense, Civil, Environmental monitoring (physical, chemical and biological).

### PAYLOADS FOR UAV

Payloads – Classification of Payloads – camera – sensors – radars – various measuring devices – classification of payload based on applications – Hyper spectral sensors – laser detection and range – synthetic aperture radar – thermal cameras – ultra sonic detectors - case study on payloads.

### LAUNCH AND RECOVERY

Launching systems - UAV Launch Methods for Fixed-Wing Vehicles - Vertical Takeoff and Landing UAV Launch - Recovery systems.

#### UAV NAVIGATION AND GUIDANCE SYSTEMS

Navigation - Dead Reckoning – Inertial – Radio Navigation – Satellite – Way point Navigation. Dijkstra's Algorithm – A- star Algorithm - UAV Guidance – Types of guidance - UAV communication systems - Ground control station – Telemetry - UAS future

### TEXT BOOKS

1. Andey Lennon "Basics of R/C model Aircraft design" Model airplane news publication

### REFERENCES

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE / AVIT	muthuselvan@avit.ac.in
2	R.Bharanidharan	Professor	CSE / VMKVEC	bharanidharan@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

250	21001										Category	L	Т	Р	Credit
355	921P01		B	IO SYS	STEMS	S WITH	H AI				EC-PS	3	0	0	3
PREAN	<b>IBLE</b>														
The go	bal of t	his cou	irse is	to intro	duce a	nd app	oly Arti	ficial I	Intellige	enc	ce (AI) to	ools to p	roblem	s in I	Biomedica
Engine	ering. A	AI algo	orithms	can lea	rn patte	erns fro	m bion	nedical	data se	ets	to provid	le action	able ins	sights	on diseas
diagno	sis or tr	eatmer	nt. This	course	will fo	cus on	practica	al appli	cations	of	f AI in BN	AE with	hands-	on tute	orials. Thi
course	will pr	ovide	an over	view o	f a wic	le rang	e of Al	and n	nachine	e-1e	earning to	ols (e.g.	cluster	ring, r	egression
decisio	on trees,	rando	n forest	s and n	eural n	etworks	s), bion	nedical	data se	ts	and diseas	ses.			
PRERE	QUISI	TE													
NIL															
COURS	SE OBJ	ECTI	VES												
1.	To int	roduce	genera	l biolog	ical co	ncepts i	in engir	neering	fields						
2.	To understand importance of biological concepts in engineering fields														
3.	To understand application of engineering concepts in medical instrumentation														
COURS	SE OUT	ГСОМ	ES												
On the s	uccessf	ful com	pletion	of the c	course,	student	s will b	e able	to						
<b>CO1:</b> U	Jndersta	and the	use of l	basic bi	ology i	n engin	eering						Unde	rstand	ļ
CO2: U	Jndersta	and the	relatior	n betwe	en AI &	k health	ncare						Unde	rstanc	
<b>CO3:</b> A	Apply th	e AI co	oncepts	to anal	yses &	predict	the me	dical ir	naging	da	ita		Ap	ply	
<b>CO4:</b> I	Design h	nealthca	are devi	ces usi	ng AI a	nd its a	pplicat	ions in	robotic	sı	urgery &		Cr	eate	
MADDI	3D prin	ting				⁷ OME	C AND		DAM	NЛ	E SDECI	FICOU		ES.	
MAFFI			NUGRA		.0010	JONIE	5 AND	rnu	JNANI		E SFECI		ICOM	LS	
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9		PO11	PO12	PSO1	PSC	D2 PSO3
C01	-	М	-	-	-	-	S	М	-	-	-	S	S	-	-
CO2	-	М	-	-	М	-	S	М	-	-	-	S	S	Μ	-
CO3	М	-	-	М	S	-	М	М	М	-	-	М	-	S	-
CO4	S	М	S	-	S	-	S	Μ	М	-	-	М	-	-	S
S- Stron	g; M-M	Iedium	; L-Lov	V										·	·

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

# INTRODCTION TO AI:

A Multifaceted Discipline – Examining Artificial Intelligence – Machine Learning and Data Science – Learning from Real-time, Big Data, Applications of AI in Healthcare – Realizing the Potential of AI in healthcare Data: Data – Types of Data – Big Data Small Data – Meta Data – Healthcare Data Little and Big Use Cases – Evolution of Data and its Analytics – Turning Data into Information Using Big Data – Reasoning – Challenged of Big Data Resistance – Policies and Governance – Fragmentation – Lack of Data Strategy – Visualization – Timeliness of Analysis – Ethics – Data and Information Governance – Deploying a Big Data Project – Big Data Tools

## MACHINE LEARNING ALGORITHMS:

Basics – Machine Learning different from Traditional Software Engineering – Machine Learning Basics – How to Perform Machine Learning – Machine Learning Algorithms: Defining the ML project – Common Libraries for Machine Learning – Supervised Learning Algorithms – Decision Tress – Ensembles – Linear Regression – Logistic Regression – SVM – Naïve Bayes – kNN k-Nearest neighbor – Neural Networks – Deep Learning – Unsupervised Learning – Dimensionality Reduction Algorithms – Dimensionality Reduction techniques – Natural Language Processing (NLP): Preprocessing: Lexical Analysis – Syntactic Analysis – Semantic Analysis – Techniques Used within NLP – Genetic Algorithm – Best Practices and Considerations – Use Case: Type 2 Diabetes

## OVERVIEW OF HEALTH CARE DATA:

Type of Healthcare data – Structure of Health care Data – Common Data sources for High Utilizers - Machine Learning Modelling from Health Care Data: Supervised Models – Interpreting supervised Models – Unsupervised Models -Descriptive Analysis of High Utilizers: Threshold-Based Methods for Frequent Emergency Department Users – Temporal Consistency of High Utilizers - Residual Analysis for Identifying High Utilizers: Bata and Methods – Results - Results – Machine Learning Results for High Utilizers – Predicting Hospital Readmissions – Predicting Healthcare expenditure – Clustering Asynchronous Healthcare Encounters Time Series

## **OVERVIEW OF HEALTHCARE DATA:**

Type of Healthcare data – Structure of Health care Data – Common Data sources for High Utililizers - Machine Learning Modelling from Health Care Data: Supervised Models – Interpreting supervised Models – Unsupervised Models -Descriptive Analysis of High Utilizers: Threshold-Based Methods for Frequent Emergency Department Users – Temporal Consistency of High Utilizers - Residual Analysis for Identifying High Utilizers: Bata and Methods – Results - Results – Machine Learning Results for High Utilizers – Predicting Hospital Readmissions – Predicting Healthcare expenditure – Clustering Asynchronous Healthcare Encounters Time Series

## FUTURE OF HEALTHCARE & CASE STUDIES:

Shifting from Volume to Value – Evidence-Based Medicine – Personalized Medicine – Vision of the Future – Connected Medicine – Medication Adherence – Accessible Diagnostic Tests – Smart Implantables – Digital Health and Therapeutics – Incentivized Wellness – AI – Virtual and Augmented Reality – Blockchain – Robots – Smart Places Case Studies: AI for Imaging of Diabetic Foot Concerns and Prioritization of Referral for Improvements in Morbidity and Mortality – Outcomes of a Digitally Delivered, Low Carbohydrate, Type 2 Diabetes Self-Management Program: 1-Year Results of a Single-Arm – Delivering a Scalable and Engaging Digital Therapy for Epilepsy – Improving Learning Outcomes For Junior Doctors Through the Novel use of Augmented and Virtual Reality – Big Data, Big Ehics: Diagnosing Disease Risk from Patient Data

## TEXT BOOKS

- 1. Machine Learning and AI for Healthcare Big Data for Improved health Outcomes, Arjun Panesar, Apress, 2019
- 2. Data Driven Approaches for Health Care Machine Learning for Identifying High Utilizers, Chengliang Yang, Chris Detcher, Elizabeth Shenkman, Sanjay Ranka, CRC Press, 2020.

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1.	Mrs. R. Latha	Assistant Professor	CSE / AVIT	rlatha@avit.ac.in
2.	R.Bharanidharan	Professor	CSE / VMKVEC	bharanidharan@vmkvec.edu.in
			Dr	. M. RITTIA,

## COURSE DESIGNERS

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

											ategory	T.	Т	р (	Credit
359	921P04		GENE	TIC A	LGO	RITH	MS AN	ID FU	ZZY		accony				Jicuit
					L	OGIC	SYST	EMS			EC-PS	3	0	0	3
PREA	MBLE	, I											1 1	1	
This c	ourse	will co	over fur	Idamei	ital co	ncepts	of Art	ificial	Neura	l Netw	orks (Al	NNs), Fu	zzy log	gic (F	L) and
optim	ization	techni	iques us	sing G	enetic	Algori	thm (G	iA), PS	50, DE	etc					
NIL	EQUIC														
COUR	SE OF	<b>JEC</b>	<b>TIVES</b>												
<b>1.</b> To introduce the ideas of fuzzy sets, fuzzy logic and use of heuristics based on human experience															
To introduce the ideas of fuzzy sets, fuzzy logic and use of neuristics based on numan experience           To become familiar with neural networks that can learn from available examples and generalize to															
2. To become familiar with neural networks that can learn from available examples and generalize to form appropriate rules for inference systems															
To provide the mathematical background for carrying out the optimization associated with neural															
3.	3. If o provide the mathematical background for carrying out the optimization associated with neural network learning														
COUR	SE OU	JTCO	MES												
On the	On the successful completion of the course, students will be able to														
CO1:	Identify m	y and s	select a	suitab	le Soft	Comp	outing t	echnol	ogy to	solve	the	Unders	tand		
<b>CO2:</b>	Design	a neu	ral netv	vork to	solve	any pr	oblem					Create			
<b>CO3:</b>	Design	fuzzy	contro	ller sys	stems							Create			
<b>CO4</b> :	Constr	uct a s	olution	and in	npleme	ent a So	oft Cor	nputin	g solut	ion		Create			
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAM	ME SPE	CIFIC C	OUTCO	OME	S
COs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO1</b>	PO11	PO12	PSO1	PSC	)2 PS
										0					03
CO1	-	-	-	-	-	-	-	-	-	-	-	-	M	-	
<u>CO2</u>	L	-	-	-	-	-	-	S	L	M	-	-	M	-	
CO3	L	M	-	-	-	-	M	S	L	M	-	-	IVI	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
5- Stro	ng; M-	Mediu	IM; L-L	ow											

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## INTRODUCTION TO BNN

Neural Networks: Introduction to Biological Neural Networks: Neuron physiology, Neuronal diversity, specification of the brain, the eye's Neural Network. Artificial Neural Network Concepts: Neural attributes, modeling learning in ANN, characteristics of ANN, ANN topologies, learning algorithm

## NETWORK PARADIGM

Neural Network Paradigm: MeCulloch-Pitts, Model, the perception, Backpropagation networks. Associative Memory, Adaptive Resonance (ART) paradigm, Hopfield Model, Competitive learning Model, Kohonen SelfOrganizing Network

## FUZZY SETS

Fuzzy Logic: Introduction to Fuzzy sets: Fuzzy set theory Vs Probability Theory, classical set theory, properties of Fuzzy sets, Operation on Fuzzy sets. Fuzzy relations, Operations of Fuzzy relation, the extension principle. Fuzzy Arithmetic

## APPROXIMATE REASONING

Approximate reasoning: Introduction, linguistic variables, Fuzzy proposition, Fuzzy if-then rules. Fuzzy Reasoning – Fuzzy Inference Systems – Mamdani Fuzzy Models – Sugeno Fuzzy Models – Tsukamoto Fuzzy Models – Input Space Partitioning and Fuzzy Modeling

## GENETIC ALGORITHMS & HYBRID SYSTEMS

Genetic Algorithm – Genetic Modelling - Hybrid systems: Integration of Neural Networks, Fuzzy logic and Genetic Algorithms – GA based backpropagation networks – Fuzzy backpropagation networks – Simplifies Fuzzy ARTMAP - Fuzzy Associative Memories – Fuzzy Logic controlled Genetic systems

## TEXT BOOKS

- 1. Introduction to Artificial Neural Systems, Jacek M. Zurada, Jaico Publishing House, 1994.
- **2.** Neural Network, Fuzzy Logic and Genetic Algorithm, S. Rajshekahran, G.A. Vijaylaxmi Pai, PHI Learning Pvt. Ltd, 2003.

### REFERENCES

- 1. Fuzzy sets & fuzzy logic, George J Klir, B. Yuan, PHI, 1995..
- **2.** Swarm Intelligence: From Natural to Artificial Systems, E. Bonabeau, M. Dorigo, and G. Theraulaz, Oxford University Press, 1999.

S. No.	Name of the Faculty	Designation	Department / Name	Mail ID
			of the College	
1.	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@avit.ac.i n
2.	T.Geetha	Assistant Professor	CSE / VMKVEC	geetha@vmkvec.edu.in
			Dr. M.	NITHIA,

35921P09	KERNEL METHODS FOR	Category	L	Т	Р	Credit
	MACHINE LEARNING	EC-PS	3	0	0	3

#### PREAMBLE

This course helps the students to know how kernel methods can be used in various machine learning tasks, including classification, ranking and preference learning, as well as learning with multiple data sources and targets. The student knows how convex optimization methods can be used to efficiently train kernel-based models. The student knows how structured data such as sequences, hierarchies and graphs can be tackled through kernel methods.

## PREREQUISITE

MACHINE LEARNING

## **COURSE OBJECTIVES**

1.	To familiarize on the concepts of kernel based machine learning								
2.	To study on the methods for dimensionality reduction								
3.	To gain knowledge on the unsupervised models for cluster analysis								
4.	To implement various models for Kernel- ridge regression and SVMs								
COUR	COURSE OUTCOMES								
On the	successful completion of the course, students will be able to								
<b>CO1:</b>	Understand the fundamental concepts in kernel based machine learning	Understand							
<b>CO2:</b>	Understand the various methods for dimensionality reduction	Apply							
<b>CO3:</b>	CO3: Understand and apply how unsupervised models work for cluster analysis Apply								
CO4: .	CO4: Apply and analyze various Kernel-Ridge regression models Analyse								
CO5:	CO5: Apply and analyze various Support Vector Machines and its variants Analysee								

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	<b>PO1</b>	<b>PO2</b>	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	<b>PO1</b>	PO11	<b>PO12</b>	PSO1	PSO2	PSO
										0					3
CO1	S	М	-	-	Μ	-	Μ	М	-	-	-	S	-	Μ	-
CO2	S	М	-	-	Μ	-	Μ	Μ	-	-	-	S	-	Μ	-
CO3	S	М	-	-	М	-	М	М	-	-	-	S	-	Μ	-
CO4	S	М	-	-	Μ	-	Μ	Μ	-	-	-	S	-	Μ	-
CO5	S	Μ	-	-	Μ	-	Μ	Μ	-	-	-	S	-	М	-

S- Strong; M-Medium; L-Low

M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## FUNDAMENTALS OF KERNEL BASED MACHINE LEARNING:

Feature representation and dimension reduction – The learning subspace property (LSP) and "kernelization" of learning models – Unsupervised learning for cluster discovery – Supervised learning for linear classifiers – Gnereralized inner products and kernel function – Performabce metrics Kernel-induced vector spaces: Mercer kernels and kernel-induced similiarity metrics – Training data independent intrinsic feature vectors – Training data- dependent empirical feature vectors – The kernel-trick for nonvectorial data analysis

### DIMENSION_REDUCTION:FEATURE SELECTION AND PCA/KPCA:

Subspace projection and PCA - Numerical methods for computation of PCA – Kernel principal component analysis (KPCA) – Kernel principal component analysis(KPCA) Feature Selection: The filtering approach to feature selection – The wrapper approach to feature selection – Application studies of the feature selection approach

#### UNSUPERVISED LEARNING MODELS FOR CLUSTER ANALYSIS:

Unsupervised learning for cluster discovery: The similarity metric and clustering strategy – K-means clustering Models – Expectation-maximization(EM) learning models – Self-organizing maps(SOM) learning models – Bi-clustering data analysis Kernel methods for cluster analysis: Kernel based K-means learning models – Kernel K-means for nonvectorical data analysis – K-means learning models in kernel-induced spectral space – Kernelized K-means learning models – Kernel K-means learning models – Kernel-induced SOM learning models – Neighbor-joining hierarchical cluster analysis

KERNELRIDGEREGRESSORSANDVARIANTS:Kernel-based regression and regularization analysis:Linear least-squares-error analysis - Kernel-based regressionanalysis – Regularization via radial basis function (RBF) networks Linear Regression and discriminant analysis forsupervised classification:Characterization of supervised learning models – Supervised learning models over-determinedformulation – A regularization method for robust learning:training versus prediction performances – Kernelized learningmodels in empirical space:linear kernels Kernel ridge regression for supervised classification:Kernel-baseddiscriminant analysis(KDA) – Kernel ridge regression (KRR) for supervised classification - Perturbational discriminantanalysis(PDA):Decision component and the regression ratio in special space – Application studies:KDA versus KRR –Trimming detrimental (anti-support) vectors in KRR learning models – Multi-class and multi-label supervisedclassification – Supervised subspace projection methods

### SUPPORT VECTOR MACHINES AND VARIANTS:

Support vector machines: Linear support vector machines – SVM with fuzzy separation : roles of stack variables – Kerrnel-based support vector machines – Application case studies – Empirical space SVM for trimming of training vectors Support vector learning models for outlier detection – Support vector regression(SVR) – Hyperplane based oneclass SVM learning models – Hypersphere-based one class SVM – Support vector clustering Ridge-SVM learning models – Roles of C and o on WECs of KRR and SVM – Ridge-SVM learning models - Impacts of design parameters on the WEC of ridge SVM – Prediction accuracy versus training time – Application case studies

## TEXT BOOKS

1. Kernel Methods and Machine Learning, S.Y.Kung, Cambridge University Press, 2014.

S. No.	Name of the FacultyDesignatio		Department / Name of the College	Mail ID
1.	Dr.R.Jaichandran	Associate Professor	CSE / AVIT	rjaichandran@avit.ac.in
2.	Mrs.T.Narmadha	Assistant Professor	CSE / VMKVEC	narmadha@vmkvec.edu.in

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

									Categ	gory	L	Т	Р	Cred	it
37022	LP01		HEAL	THCA	RE AN	ALYT	ICS		EC-	PS	3	0	0	3	
PREAN	<b>IBLE:</b>											1 1			
Healthca measure	are anal	ytics is ita visu	the te alizatio	chnique n with 1	e to pro machin	ocess h e and de	ealthcar eep lear	re data	with th gorithm	neir own 1s.	policy	and sta	ndards	with signif	icance
PRERE NILL	QUISI	ГE:													
COURS	SE OBJ	ECTIV	/ES												
1	1         Understand the health data formats, health care policy and standards           2         Learn the similiar of https://www.com/com/com/com/com/com/com/com/com/com/														
2	2 Learn the significance and need of data analysis and data visualization														
3	3 Understand the health data management frameworks														
4	Learn	the us	e of ma	achine	learnin	ig and	deep le	earning	algori	thms in	healthca	are			
5	Apply healthcare analytics for critical care applications														
COURS	OURSE OUTCOMES														
On the s	uccessfi	ıl comp	oletion	of the c	ourse, s	students	will be	e able to	)						
CO1: Use machine learning and deep learning algorithms for health data analysis Understand & Apply															
CO2: Apply the data management techniques for healthcare data Apply															
CO3: Evaluate the need of healthcare data analysis in e-healthcare, telemedicine Apply															
and oth $CO4$ D	er critic	al care ealth d	e applic lata and	ations	for rea	l time :	annlica	tions				Treate			
CO5: D	esign e	merge	ncy cai	e syste	em usir	ng heal	th data	analys	sis		(	Create			
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	COMES	AND	PROG	RAMM	IE SPEC	CIFIC O	UTCO	MES		
	DOI			<b>D</b> O 4		DOC			DOG	DOID	DOI1		DCO		PSO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	01   PSO2	3
CO1	S	S	М	М	L	S	S	М	S	L	S	-	-	-	-
CO2	М	S	М	М	М	S	S	М	S	М	М	-	-	-	-
CO3	S	S	S	S	М	S	S	S	S	М	S	-	-	-	-
CO4	S	S	S	М	М	S	S	S	S	L	S	-	-	-	-
CO5	S	S	М	М	L	S	М	М	S	L	М	-	-	-	-
S- Strong; M-Medium; L-Low															
SYLLABUS UNIT I INTRODUCTION TO HEALTHCARE ANALYSIS Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy-															

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem. Standardized code sets – Data Formats – Machine Learning Foundations: Tree Like reasoning , Probabilistic reasoning and Bayes Theorem, Weighted sum approach.

UNIT II ANALYTICS ON MACHINE LEARNING 9 Machine Learning Pipeline – Pre-processing –Visualization – Feature Selection – Training model parameter – Evaluation model : Sensitivity , Specificity , PPV ,NPV, FPR ,Accuracy , ROC , Precision Recall Curves , Valued target variables –Python: Variables and types, Data Structures and containers , Pandas Data Frame :Operations – Scikit –Learn : Pre-processing , Feature Selection.

UNIT III HEALTH CARE MANAGEMENT 9 IOT- Smart Sensors – Migration of Healthcare Relational database to NoSQL Cloud Database – Decision Support System – Matrix block Cipher System – Semantic Framework Analysis – Histogram bin Shifting and Rc6 Encryption – Clinical Prediction Models – Visual Analytics for Healthcare.

UNIT IV HEALTHCARE AND DEEP LEARNING 9 Introduction on Deep Learning – DFF network CNN- RNN for Sequences – Biomedical Image and Signal Analysis – Natural Language Processing and Data Mining for Clinical Data – Mobile Imaging and Analytics – Clinical Decision Support System.

UNIT V CASE STUDIES 9 Predicting Mortality for cardiology Practice –Smart Ambulance System using IOT –Hospital Acquired Conditions (HAC) program- Healthcare and Emerging Technologies – ECG Data Analysis.

## **TEXT BOOKS:**

- 1. The Art of R Programming: A Tour of Statistical Software Design, Norman Matloff, No Starch Press, 2011
- 2. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley Data & Analytics Series, 2013.

### **REFERENCES:**

- 1. Beginning R The Statistical Programming Language, Mark Gardener, Wiley, 2013.
- 2. Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R, Robert Knell, Amazon Digital South Asia Services Inc, 2013

COURSE	COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Department /	Email Id									
			Name of the College										
1	Dr.M. Adimoolam	Professor	CSE / AVIT	rjaichandran@avit.ac.in									
2	A.Kasthuri	Assistant Professor	CSE / VMKVEC	kasthuri@vmkvec.edu.in									

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35921P02	COMPUTER VISION	Category	L	Т	Р	Credit
		EC-PS	3	0	0	3

### PREAMBLE

In this course students will learn basic principles of image formation, image processing algorithms and different algorithms for 3D reconstruction and recognition from single or multiple images (video). This course emphasizes the core vision tasks of scene understanding and recognition. Applications to 3D modelling, video analysis, video surveillance, object recognition and vision based control will be discussed.

## PREREQUISITE NIL

## **COURSE OBJECTIVES**

1	To learn the fundamental image processing techniques required for computer vision			
2	To learn about Image formation process and perform shape analysis			
3	To learn about image features, analysis of Images and generate 3D models			
4	To apply techniques to build computer vision applications			
5	To learn about video processing, motion computation and 3D vision and geometry			
COURSE OUTCOMES				

## COURSE OUTCOMES

On the successful completion of the course, students will be able to

<b>CO1:</b> Implement fundamental image processing techniques required for computer vision	Understand
CO2:Understand Image formation process and perform shape analysis	Apply
<b>CO3:</b> Extract features form Images and do analysis of Images and generate 3D models	Analyze
<b>CO4:</b> Develop applications using computer vision techniques	Apply

CO5:Understand video processing, motion computation and 3D vision and geometry Analyze

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	P	PO3	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>	PSO1	PSO2	PSO3
		0													
		2													
CO1	Μ	L	-	-	Μ	-	-	-	Μ	-	-	L	S	-	-
CO2	Μ	L	-	-	Μ	-	-	-	Μ	L	-	Μ	S	-	-
CO3	Μ	L	-	-	Μ	-	-	-	Μ	L	-	Μ	-	Μ	-
CO4	Μ	L	-	-	Μ	-	-	-	Μ	L	-	S	-	Μ	М
CO5	Μ	L	-	-	-	-	-	-	Μ	L	-	Μ	-	Μ	М
S. Steener M. Modiumi I. Low															

S- Strong; M-Medium; L-Low

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

**Introduction** : Image Processing, Computer Vision and Computer Graphics, What is Computer Vision - Low-level, Midlevel, High-level, Overview of Diverse Computer Vision Applications: Document Image Analysis, Biometrics, Object Recognition, Tracking, Medical Image Analysis, Content-Based Image Retrieval, Video Data Processing, Multimedia, Virtual Reality and Augmented Reality

**Image Formation Models** : Monocular imaging system, Radiosity: The 'Physics' of Image Formation, Radiance, Irradiance, BRDF, color etc, Orthographic & Perspective Projection, Camera model and Camera calibration, Binocular imaging systems, Multiple views geometry, Structure determination, shape from shading, Photometric Stereo, Depth from Defocus, Construction of 3D model from images

**Image Processing and Feature Extraction**: Image preprocessing, Image representations (continuous and discrete), Edge detection, **Motion Estimation**: Regularization theory, Optical computation, Stereo Vision, Motion estimation, Structure from motion, **Shape Representation and Segmentation :** Contour based representation, Region based representation, Deformable curves and surfaces, Snakes and active contours, Level set representations, Fourier and wavelet descriptors, Medial representations, Multiresolution analysis

**Object recognition** : Hough transforms and other simple object recognition methods, Shape correspondence and shape matching, Principal component analysis, Shape priors for recognition, **Image Understanding** : Pattern recognition methods, HMM, GMM and EM

**Applications**: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians

## **REFERENCE BOOKS**

1. Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.

2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.

3. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.

4. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.

5. Richard Szeliski, Computer Vision: Algorithms and Applications (CVAA). Springer, 2010

6. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.

7. E. R. Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012

8. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012

9. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.

	COURSE I	DESIGNERS	
S No		Nome of the	Da

			×11	
S. No.	Name of the	Designation	Department / Name Mail ID	
	Faculty		of the College	
			Dr. W. Kittink,	
1	Dr. Nitisha	Associate Professor	CSE / AVIT	nitishaaggarwal@avit.ac.in
----	-----------------	---------------------	--------------	----------------------------
2.	Dr. K. Sasikala	Associate Professor	CSE / VMKVEC	sasikalak@vmkvec.edu.in

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

370	37021P03	ľ	VIRTUAL REALITY AND AUGMENTED REALITYCategoryL									Т	Р	Credit	
				AUGN	(ENT)	ED RE	ALIT	Y			EC-PS	3	0	0	3
<b>PREAN</b> This syl syllabus	<b>MBLE</b> llabus : s conta	is inter ins inte	nded fo elligent	r the E agent,	Enginee Know	ering st ledge F	udents Represe	and entation	nable th n and N	hem to Aachine	lean abo e learning	ut Artifi , and ap	cial In plicatio	tellige	ence. This
PRERE	EQUIS	ITE	:NIL				•					•			
COUR	SE OB	JECT	IVES												
1.	The ob AR and	jective d make	of this the stu	course idents	e is to j aware	provide of the v	a four arious	ndation AR de	to the vices	fast gro	owing fiel	d of			
2.	To kn	ow abc	out the	AR an	d desci	ibe AF	R techn	iques							
COUR	COURSE OUTCOMES														
On the s	On the successful completion of the course, students will be able to														
CO1: D	escribe	e how A	AR sys	tems w	ork an	d list th	ne appl	ication	s of AF	λ.		Understa	nd		
CO2: U	ndersta	and and	ł analy	se the l	nardwa	re requ	iremei	nt of A	R.			Apply			
CO3: U	se com	puter v	vision o	concept	s for A	R and	descri	be AR	technic	lues		Apply			
CO4: A	nalyse	and un	ndersta	nd the	workin	g of va	rious s	tate of	the art	AR de	vices	Apply			
CO5	:To lea	n about	t Inform	ation R	etrieva	l and Sp	eech R	ecognit	ion			Understa	nd		
MAPPI	ING W	ITH F	PROG	RAMN	IE OU	TCON	AES A	ND PI	ROGR	AMM	E SPECI	FIC OU	TCO	MES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSC	D2 PSO3
CO1	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO2	М	М	L	М	L	-	-	-	-	-	М	М	S	М	М
CO3	CO3 M S M M												S	-	М
CO4	S	М	М	М	М	-	-	-	-	-	-	М	S	M	М
CO5	S	M	M	М	М	-	-	-	-	-	-	М	S	М	-
S- Stron	ng; M-I	Vlediur	n; L-Lo	OW											

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

### INTRODUCTION

What Is Augmented Reality - Defining augmented reality, history of augmented reality, The Relationship Between Augmented Reality and Other Technologies-Media, Technologies, Other Ideas Related to the Spectrum Between Real and Virtual Worlds, applications of augmented reality Augmented Reality Concepts-How Does Augmented Reality Work? Concepts Related to Augmented Reality, Ingredients of an Augmented Reality Experience

### **Augmented Reality Hardware**

Augmented Reality Hardware – Displays – Audio Displays, Haptic Displays, Visual Displays, Other sensory displays, Visual Perception, Requirements and Characteristics, Spatial Display Model. Processors – Role of Processors, Processor System Architecture, Processor Specifications. Tracking & Sensors - Tracking, Calibration, and Registration, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors, Optical Tracking, Sensor Fusion.

## **Computer Vision for Augmented Reality & Augment reality Software**

Computer Vision for Augmented Reality - Marker Tracking, Multiple-Camera Infrared Tracking, Natural Feature Tracking by Detection, Simultaneous Localization and Mapping, Outdoor Tracking Augmented Reality Software - Introduction, Major Software Components for Augmented Reality Systems, Software used to Create Content for the Augmented Reality Application.

### **AR Devices & Components**

Marker-based approach- Introduction to marker-based tracking, types of markers, marker camera pose and identification, visual tracking, mathematical representation of matrix multiplication Marker types- Template markers, 2D barcode markers, imperceptible markers. Marker-less approach- Localization based augmentation, real world examples Tracking methods- Visual tracking, feature based tracking, hybrid tracking, and

initialization and recovery.

### **AR Devices & Components**

hours

9

9 hours

AR Components – Scene Generator, Tracking system, monitoring system, display, Game scene AR Devices – Optical See- Through HMD, Virtual retinal systems, Monitor bases systems, Projection displays, Video see-through systems

# TEXT BOOKS

Text Books:

1. Allan Fowler-AR Game Development^{||}, 1st Edition, A press Publications, 2018, ISBN 978-1484236178

2. Augmented Reality: Principles & Practice by Schmalstieg / Hollerer, Pearson Education India; First edition (12 October 2016),ISBN-10: 9332578494

e-Books: https://www.vttresearch.com/sites/default/files/pdf/science/2012/S3.pdf

https://docs.microsoft.com/en-us/windows/mixed-reality/

https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/november/hololens-

introduction-to-the-hololens

### **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1.	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.
2.	Dr.Nithya	Professor	CSE	Nithya@vmkv.ac.in

									Cate	gory	L	Т	Р	Cred	it
35021	LP28		R	ROC	GRAM	MING			EC-	PS	3	0	0	3	
<b>PREAN</b> R is a so statistica	<b>IBLE:</b> cripting al langua	langua; age.	ge for s	statistic	al data	manipu	lation a	and ana	lysis. It	was insj	pired by	and is	most co	ompatible w	ith the
PRERE NIL	QUISI	ГЕ:													
COURS	<u>SE OBJ</u>	ECTIV	/ES												
1	To lear	rn R Pr	ogramn	ning											
2	To Stu	idy Obj	ect Orie	ented P	rogram	ming									
3	To Stu	ıdy Fun	ctional	Program	mming										
COURS	SE OUT	COM	ES												
On the s	On the successful completion of the course, students will be able to CO1: To Understand the basics in R programming in terms of constructs, control														
CO1: To statemen	CO1: To Understand the basics in R programming in terms of constructs, control tatements, string functions     Understand & Apply														
<b>CO2:</b> T	statements, string functions       Understand to Apply         CO2: To Understand the use of R for Big Data analytics       Understand & Apply														
CO3: Learn to apply R programming for Text processingUnderstand & Apply															
CO4: Able to appreciate and apply the R programming from a statistical perspective       Understand & Apply															
CO5: To	o learn B	Big Data	a								١	Underst	and &	Apply	
MAPPI	NG WI	TH PR	ROGRA	MME	OUTC	COMES	AND	PROG	RAMN	IE SPEC	CIFIC O	UTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO 3
CO1	S	S	М	М	L	S	S	М	S	L	S	-	-	-	-
CO2	М	S	М	Μ	М	S	S	М	S	М	М	-	-	-	-
CO3	S	S	S	S	М	S	S	S	S	М	S	-	-	-	-
CO4	S	S	S	М	М	S	S	S	S	L	S	-	-	-	-
CO5	S	S	М	М	L	S	М	М	S	L	М	-	-	-	-
S-Stron	S- Strong; M-Medium; L-Low														
SYLLA INTRO Introc Vecto else – MATRI	SYLLABUS INTRODUCTION Introducing to R – R Data Structures – Help functions in R – Vectors – Scalars – Declarations – recycling – Common Vector operations – Using all and any – Vectorized operations – NA and NULL values – Filtering – Vectorised if-then else – Vector Equality – Vector Element names MATRICES, ARRAYS AND LISTS														

## MATRICES, ARRAYS AND LISTS

Creating matrices – Matrix operations – Applying Functions to Matrix Rows and Columns – Adding and deleting rows

and columns – Vector/Matrix Distinction – Avoiding Dimension Reduction – Higher Dimensional arrays – lists – Creating lists – General list operations – Accessing list components and values – applying functions to lists – recursive lists

### DATA FRAMES

Creating Data Frames – Matrix-like operations in frames – Merging Data Frames – Applying functions to Data frames – Factors and Tables – factors and levels – Common functions used with factors – Working with tables - Other factors and table related functions - Control statements – Arithmetic and Boolean operators and values – Default values for arguments - Returning Boolean values – functions are objects – Environment and Scope issues – Writing Upstairs - Recursion – Replacement functions – Tools for composing function code – Math and Simulations in R

#### OOP

S3 Classes – S4 Classes – Managing your objects – Input/Output – accessing keyboard and monitor – reading and writing files – accessing the internet – String Manipulation – Graphics – Creating Graphs – Customizing Graphs – Saving graphs to files – Creating three-dimensional plots

#### INTERFACING

Interfacing R to other languages – Parallel R – Basic Statistics – Linear Model – Generalized Linear models – Nonlinear models – Time Series and Auto-correlation – Clustering

### **TEXT BOOKS:**

- 3. The Art of R Programming: A Tour of Statistical Software Design, Norman Matloff, No Starch Press, 2011
- **4.** R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-Wesley Data & Analytics Series, 2013.

### **REFERENCES:**

- 3. Beginning R The Statistical Programming Language, Mark Gardener, Wiley, 2013.
- **4.** Introductory R: A Beginner's Guide to Data Visualisation, Statistical Analysis and Programming in R, Robert Knell, Amazon Digital South Asia Services Inc, 2013

1.

# COURSE DESIGNERS

COURSE				
S.No	Name of the Faculty	Designation	Department / Name of the College	Email Id
1	Dr.R.Jaichandran	Professor	CSE / AVIT	rjaichandran@avit.ac.in
2	A.Kasthuri	Assistant Professor	CSE / VMKVEC	kasthuri@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

35	021000	CYBER SECURITY PRINCIPLESCategoryLTPCreditEC-PS3003												dit		
	021105		012	211 01	20010						EC-PS	3	0	0	3	
PREA	MBLE									I						
To und	erstand	the ne	ed for	Cyber S	Securit	y in re	al time	and to	study	techniqu	ies invol	ved in it	•			
PRER	EQUIS	ITE :	NIL													
COUR	SE OB	JECT	IVES													
1.	To und	lerstand	d the fu	indame	entals c	of Cybe	er Secu	rity and	d issue	S						
2.	To stue	dy vari	ous cyl	per crir	nes and	d legal	remed	ies								
3.	To app	oly vari	ous pri	vacy a	nd secu	ırity										
4.	To stue	dy E-C	ommer	ce and	digital	l paym	ents									
5.	To stue	dy the l	basic se	ecurity	aspect	s relate	ed to C	ompute	er and I	Mobiles						
COUR	SE OU	TCON	ИES													
On the	success	sful coi	mpletio	on of th	e cours	se, stuc	lents w	ill be a	ble to							
CO1:at	ole to 1	underst	and th	ne con	cept of	f Cybe	er secu	ırity aı	nd issu	ies and	challen		Unders	tand		
associa	ssociated with it.															
CO2:at	ole to u	ndersta	nd the	cyber	crimes	, their 1	nature,	legal r	emedie	es and as	s to how		App	ly		
report t	he crim	nes thro	ough av	vailable	e platfo	rms an	d proc	edures								
CO3:at	ole to a	appreci	ate va	rious p	orivacy	and s	security	y conce	erns of	n onlin	e Social		Ann	<b>11</b> 7		
media a	and unc	lerstan	d the r	eportin	ig proc	edure	of inap	propria	ate con	itent, un	derlying		App	ly		
legal as	spects a	nd best	t practi	ces for	the us	e of So	cial m	edia pla	atform	5.						
CO4: a	ble to	unders	stand t	he bas	ic con	cepts 1	elated	to E-C	Comme	erce and	l digital		App	ly		
paymer	nts.															
CO5: a	ble to u	inderst	and the	e basic	securit	y aspe	cts rela	ted to	Compu	ter and			Арр	ly		
Mobile	s.					• •										
MAPP	ING W	/ITH F	ROG	RAMN	<b>AE OU</b>	TCON	MES A	ND PI	ROGR	AMME	SPECI	FIC OU	TCON	MES		
COs	PO1	<b>PO2</b>	<b>PO3</b>	<b>PO4</b>	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	<b>PO10</b>	<b>PO11</b>	<b>PO12</b>	PSO1	PS	O2	PS
																03
CO1	М	М	М	М	-	-	-	-	-	-	-	-	М	Ν	Л	М
CO2	М	М	М	М	М	-	-	-	-	-	-	-	М	Ν	Л	М
<b>CO3</b>	М	М	S	М	М	-	-	-	-	-	-	-	М	Ν	Л	М
<b>CO4</b>	S	М	М	М		-	-	-	-	-	-	-	М	Ν	Л	S
CO5	S	М	М	М	S	-	-	-	-	-	-	-	М	Ν	Л	S
S- Stro	ng; M-I	Mediur	n; L-Lo	ow												

## INTRODUCTION TO CYBER SECURITY

Defining Cyberspace and Overview of Computer and Web-technology, Architecture of cyberspace,

Communication and web technology, Internet, World wide web, Advent of internet, Internet infrastructure for data transfer and governance, Internet society, Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.

## CYBER CRIME AND CYBER LAW

Classification of cyber crimes, Common cyber crimes- cyber crime targeting computers and mobiles, cyber crime against women and children, financial frauds, social engineering attacks, malware and ransomware attacks, zero day and zero click attacks, Cybercriminals modus-operandi, Reporting of cyber crimes, Remedial and mitigation measures, Legal perspective of cyber crime, IT Act 2000 and its amendments, Cyber crime and

offences, Organisations dealing with Cyber crime and Cyber security in India, Case studies.

# SOCIAL MEDIA OVERVIEW AND SECURITY

Introduction to Social networks. Types of Social media, Social media platforms, Social media monitoring, Hashtag, Viral content, Social media marketing, Social media privacy, Challenges, opportunities and pitfalls in online social network, Security issues related to social media, Flagging and reporting of inappropriate content, Laws regarding posting of inappropriate content, Best practices for the use of Social media, Case studies.

# E - C O M M E R C E AND DIGITAL PAYMENTS

Definition of E- Commerce, Main components of E-Commerce, Elements of E-Commerce security, E-Commerce threats, E-Commerce security best practices, Introduction to digital payments, Components of digital payment and stake holders, Modes of digital payments- Banking Cards, Unified Payment Interface (UPI), e-Wallets, Unstructured Supplementary Service Data (USSD), Aadhar enabled payments, Digital payments related common frauds and preventive measures. RBI guidelines on digital payments and customer protection in unauthorised banking transactions. Relevant provisions of Payament Settlement Act,2007.

# DIGITAL DEVICES S E C U R I T Y , TOOLS AND TECHNOLOGIES FOR CYBER SECURITY

End Point device and Mobile phone security, Password policy, Security patch management, Data backup, Downloading and management of third party software, Device security policy, Cyber Security best practices, Significance of host firewall and Ant-virus, Management of host firewall and Anti-virus, Wi-Fi security, Configuration of basic security policy and permissions.

# REFERENCES

1. Cyber Crime Impact in the New Millennium, by R. C Mishra , Auther Press. Edition 2010.

2. Cyber Security Understanding Cyber Crimes, Computer Forensics and Legal Perspectives by Sumit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011)

3. Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson , 13th November, 2001)

4. Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd.

5. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers.

6. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. 7. Fundamentals of Network Security by E. Maiwald, McGraw Hill

# **COURSE DESIGNERS**

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Assistant professor G-II	CSE	<u>rjaichandran@avit.ac.in</u>
2	Mr. B. Sundharamurthy	Assistant Professor	CSE	sundharamurthy@vmkvec.edu.in

Witt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

BUSINESS INTELLIGENCE AND ITS	BUSINESS INTELLIGENCE AND ITS     Category     L     T     P     Credit											
APPLICATIONS	EC-IE	3	0	0	3							
<b>REAMBLE</b> Business Intelligence (BI) refers to the tools, technologies, applications	and pract	ices use	d to co	llect. in	tegrate.							
analyze, and present an organization's raw data in order to create insigh	tful and ac	tionable	busine	ess info	rmation							
In Data mining.												
PREREQUISITE – NIL												
1 To Introduce students to various business intelligence concepts												
2 To learn the concepts of data integration used to develop intellig	ent system	s for dec	cision s	upport								
3 To introduce visualization tool for prepare the enterprise reporting	ng			11								
4 To learn analytical components and technologies used to create data/text/Web mining methods	dashboards	s and sco	orecard	s,								
4 To gain new insights into organizational operations in implement Intelligence (BI)	entation of	system	s for B	susiness								
COURSE OUTCOMES												
On the successful completion of the course, students will be able to												
CO1. Learn about the concepts of OLTP and OLAP for BI infrastructure	developm	ent	Unde	erstand								
CO2. Gained an understanding of how business professionals can use a techniques to formulate and solve relevant problems and how they use a decision making	nalytics nalytics to	support	Anal	yze								
CO3. Apply Clustering, Association and Classification techniques for D	ata Integra	tion	App	ly								
CO4. Assess BI tools to solve problems, issues, and trends using predict	tive analys	is	App	ly								
CO5. Develop systems to measure, monitor and predict the enterprise performance indicators for business decision-making process	variables a	nd	App	ly								
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAM	ME SPEC	CIFIC O	UTCO	OMES								
COS         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO1	0 PO11	PO12	PSO1	PSO2	PSO3							
CO1 S M L - M	-	М	S	М	М							
CO2 S M L - M	-	М	S	М	М							
CO3 S M L - M	O3 S M L - M M S M M											
CO4 S M L - M	-	М	S	М	М							
CO5 S M L - M	-	M	124	М	М							
S- Strong; M-Medium; L-Low	0	M	02									
SYLLABUS	Dr	M. NIT	HYA,									

## INTRODUCTION TO BUSINESS INTELLLIGENCE

Introduction to OLTP AND OLAP – BI Definition and BI Concepts – Business Applications of BI - BI Framework- Role of Data Warehousing in BI –BI Infrastructure Components- BI Process – Developing Data Warehouse – Management Framework – Business driven approach –BI Technology — BI Roles & Responsibilities.

## **BASICS OF DATA INTEGRATION**

Concepts of Data Integration need and advantages of using Data Integration – Introduction to common data integration approaches – Introduction to ETL using SSIS – Introduction to Data Quality – Data Profiling Concepts and Applications.

## INTRODUCTION TO MULTIDIMENSIONAL DATA MODELING

Introduction to Data and Dimensional Modeling – Multi Dimensional Data Model – ER modeling Vs Multi Dimensional Model – Concepts of Dimensions - facts - cubes- attributes- hierarchies- star and snowflake schema – Introduction to Business Metrics and KPIs – Creating Cubes using SSAS.

## **BASICS OF ENTERPRISE REPORTING**

Introduction to Enterprise Reporting - Concepts of dashboards - balanced scorecards – Introduction to SSRS Architecture– Enterprise Reporting using SSRS reporting service

## **BI ROAD AHEAD**

BI and Mobility – BI and cloud computing – BI for ERP systems - Benefits of BI in ERP-NorthWind_Traders Data-Data Analyses through Excel-Kettle Tool – Conversion of data using Kettle Tool.

## TEXT BOOKS

1.RN Prasad, Seema Acharya, "Fundamentals Of Business Analytics" Wiley India, 2011

## REFERENCES

1. Soumendra Mohanty, "Data Warehousing Design, Development and Best Practices", Tata McGraw-Hill, New Delhi, 2007.

2. David Loshin, "Business Intelligence", Morgan Kaufmann Publishsers, San Francisco, Fifth edition, 2007.

3. Larissa Terpeluk Moss and Shaku Atre, "Business Intelligence Roadmap", Pearson Education, 2007

### COURSE DESIGNERS

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3412	1106	BUILDING ENTERPRISE APPLICATIO							TIONS	5	Catego	ory L	Т	P C	redit
											EC-I	E 3	0	0	3
PREA Enterp develo enterp	MBLE rise Ap pment l rise	plicatio Enterpr	ons are 'ise Apj	compl complicatio	lex sys ns are	tems. ' the inst	They r trument	equire ts of ad	delicate Iministr	e planni ation, m	ng and o anagemo	expertise ent, and p	for the	e right ty g for an	pe of
PRER	EQUIS	SITE –	NIL												
COUR	RSE OB	JECT	IVES												
1	To tea	ach the	student	s about	t variou	s ways	to buil	d enter	prise ap	plication	18				
2	At the platfo	e comp rms	letion of	of the c	lass, th	ey sho	uld und	lerstand	d how t	to deploy	y system	s to a nu	mber of	f differer	t host
3	They	develop	p graph	ical use	er interf	faces, a	s well a	as chara	acter-or	iented sc	reens. T	hey test a	nd debu	ig their s	ystem
COUF	URSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1. I	Familiar	ize wit	h conce	ept of E	Interpri	se Anal	lysis an	d Busii	ness Mo	odeling.	۱	Understai	nd		
CO2. U docum	Understation	and req applica	uireme	nts vali chitectu	idation, ire.	planni	ng and	estimat	tion. De	esign and	1	Understa	nd		
CO3. applica	Underst ation co	and th mpone	e impo nts	ortance	of app	olication	n frame	ework	and de	signing	other	Apply			
CO4.	Constru	ct and	develop	o differ	ent solu	ition la	yers.					Apply			
CO5. I	Perform	Code	review,	Code a	nalysis	, build	process	8.				Apply			
MAPI	PING W	ITH	PROGI	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAN	MME SI	PECIFIC	COUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М	-	-	-	М	-	М	-	S	М	М
CO2	S	М	М	М	М	-	-	-	М	-	-	-	S	М	М
CO3	S	-	М	М	М	-	-	-	М	-	-	М	S	-	М
CO4	S	М	S	М	S	-	-	-	S	М	М	М	S	М	М
CO5	S	S         M         S         -         -         S         S         S         M         S         M         -													
S- Stro	ong; M-l	Mediur	n; L-Lo	ow						1					

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### SYLLABUS Introduction

enterprise applications and their types, software engineering methodologies, life cycle of raising an enterprise application, introduction to skills required to build an enterprise application, key determinants of successful enterprise applications, and measuring the success of enterprise application

### **Incepting of enterprise applications**

Enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, non functional requirements, requirements validation, planning and estimation

### Architecting and Designing enterprise applications

Concept of architecture, views and viewpoints, enterprise architecture, logical architecture, technical architecturedesign, different technical layers, best practices, data architecture and design – relational, XML, and other structured data representations, Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture and design

### **Constructing of enterprise applications**

Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing, dynamic code analysis – code profiling and code coverage

### Testing and Rolling out enterprise applications

Types and methods of testing an enterprise application, testing levels and approaches, testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

### TEXT BOOKS

1. Raising Enterprise Applications – Published by John Wiley, authored by Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, Veerakumar Esakimuthu

2. Building Java Enterprise Applications - Published by O'Reilly Media, authored by Brett McLaughlin

### **REFERENCE BOOK**

1. Software Requirements: Styles & Techniques – published by Addison-Wesley Professional

- 2. Software Systems Requirements Engineering: In Practice published by McGraw-Hill/Osborne Media
- 3. Managing Software Requirements: A Use Case Approach, 2/e published by Pearson
- 4. Software Architecture: A Case Based Approach published by Pearson

### COURSE DESIGNERS

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

3412	1 15	INTERNET AND WEB TECHNOLOGY Category L T P Creation EC-IE 3 0 0 3											edit				
											EC-II	Ξ	3	0	0		3
PREA This c includ basic genera	MBLI ourse es the underst	E is inte flangu anding iding i	nded t age of g of g introdu	o teacl the W raphic iction t	h the b eb' – l produce o more	basics HTML ction v e advai	involv , the f with a nced to	ed in j undam specif opics su	oublish entals ic stre uch as	ning cor of how ss on ci progran	ttent on the Inter reating ming a	the V rnet a graph nd scr	Woi and ics ripti	d Wie the W for the	de W eb fu e We	/eb. ncti 2b, a	This on, a and a
PRER	EQUI	SITE	– NIL														
COUL	RSE O	BJEC	TIVE	S													
1	To in	troduc	e basic	c conce	epts of	interne	et										
2	To le	arn ab	out HT	TML &	XML												
3	To le	arn ab	out inte	ernet s	ecurity	7											
COUI	RSE O	UTCO	OMES														
On the	On the successful completion of the course, students will be able to																
CO1 .	Analyz	ze a wo	eb pag	e and i	dentify	its ele	ements	and at	tribute	es.		Analy	ze				
CO2.	Create	web p	ages u	sing X	HTML	and C	lascadi	ng Sty	le She	ets.		Apply	1				
CO3. 1	Build d	ynami	c web	pages	using .	JavaSc	ript (C	lient s	ide pro	gramm	ing).	Appl	у				
CO4.	Create	XML	docum	ents a	nd Sch	emas						Apply	1				
CO5. 1	Build in	nteract	tive we	eb appl	ication	is using	g JSP				-	Apply	1				
MAP	PING	WITH	PRO	GRAN	IME (	OUTC	OME	S AND	PRO	GRAM	ME SP	ECIF	ЧC	OUT	COM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	POI	12	PSO1	PSO	D2	PSO3
CO1	S	М	L	-	М	-	-	-	М	-	-	M	[	S	N	1	М
CO2	S	М	L	-	М	-	-	-	М	-	-	-		S	N	1	М
CO3	CO3 S M L - L M L												S	N	1	М	
CO4	S	М	L	-	М	-	-	-	М	-	-	-		S	N	1	М
CO5	S	М	L	-	М	-	-	-	М	-	-	L		S	N	1	М
S- Stro	ong; M	-Medi	um; L-	Low		-	-	-		-		·					
SYLL	ABUS																

### INTRODUCTION TO INTERNET

Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: Three Tier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems

### HTML CSS AND SCRIPTING

HTML – Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax, Class Selector, Id Selector Dom (Document Object Model) & Dso (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script – Java Script Object Model, Variables-Constant – Expressions, Conditions- Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements

### XML

What is XML – Basic Standards, Schema Standards, Linking & Presentation Standards, Standards that build on XML, Generating XML data, Writing a simple XML File, Creating a Document type definition, Documents & Data ,Defining Attributes & Entities in the DTD ,Defining Parameter Entities & conditional Sections, Resolving a naming conflict, Using Namespaces, Designing an XML data structure, Normalizing Data, Normalizing DTDS

#### **INTERNET SECURITY & FIREWALLS**

Security Threats From Mobile Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various electronic payment systems, Introduction to EDI, Challenges–Response System, Encrypted Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy Application Gateways, Aaa (Authentication ,Authorization And Accounting).

### WEBSITE PLANNING & HOSTING

Introduction, Web Page Lay-Outing, Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), FtpClients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat.

### **TEXT BOOKS**

1. Internet & Intranet Engineering,- Daniel Minoli, TMH.

2 .Alexis Leon and Mathews Leon – Internet for Every One, Tech World.

### REFERENCES

1. Eric Ladd, Jim O'Donnel –"Using HTML 4, XML and JAVA"-Prentice Hall of India -1999.

2. "Beginning Java Script "- Paul Wilton - SPD Publications -2001

### **Course Designers:**

### INFOSYS

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

3502	1101		LEA	ARNIN	G IT F	SSEN	TIALS	BY D	OING		CategoryLTPCrediEC-IE3003				redit
											EC-	E 3	0	0	3
PREA The pr include tools at	MBLE oposed es progr nd techi	electiv ammin nologie	ve cour ng , Da s for th	se expe tabase a e right	oses the and we type of	e non-( b Tech websit	CS/IT s nology e devel	student: among opmen	s to IT st othe t and er	Essentia r related nable stue	als. The topics. dent to o	core mo This cou create sim	odules o rse refe ple web	of this El rs to the applicat	ective basic ions
PRER	EQUIS	ITE –	NIL												
COUR	RSE OB	JECT	IVES												
1	To lea	ırn abo	ut the e	ssentia	ls of In	format	ion Tec	chnolog	, y						
2	To ge	t an ide	ea abou	t the sci	ripting	langua	ges.								
3	To ge	t an ide	ea abou	t the in	ternet p	orotoco	ls								
COUR	URSE OUTCOMES														
On the successful completion of the course, students will be able to															
CO1 U	Jndersta	and the	networ	king co	oncept i	nternet	protoc	ols, net	work re	outing		Understa	nd		
CO2. U	Jndersta	and the	fundar	nentals	of web	applic	ations a	and its 1	nodelir	ıg		Understa	nd		
CO3. U	Jndersta	and and	l learn t	the scri	pting la	nguage	es with	design	of web	applicat	ions	Understa	nd		
CO4. <i>A</i>	Analyze	the pro	ocess of	f mobil	e comn	nunicat	ion and	networ	rk techr	nologies		Analyze			
CO5. 1 applica	Build si tions.	mple i	nteract	ive app	olication	ns, data	ibase a	pplicati	ions an	d multin	nedia	Analyze			
MAPP	PING W	ITH F	PROGI	RAMM	E OU	гсом	ES AN	D PRO	)GRAN	MME SI	PECIFI	C OUTC	OMES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	S	М	Μ	М	-	-	-	-	-	-	-	М	S	М	М
CO2	S	М	М	М	-	-	-	-	-	-	-	М	S	-	М
CO3	S	М	М	М	-	-	-	-	-	-	-	М	S	М	М
CO4	М	М	М	М	М	-	-	-	-	-	-	М	S	М	-
CO5	М	Μ	М	М	S	-	-	-	-	-	-	М	-	М	М
S- Stro	ong; M-I	Mediur	n; L-Lo	OW			•	•	•	•	•	•		•	•

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### **SYLLABUS**

#### **Fundamentals of Computer architecture**

introduction-organization of a small computer -Central Processing Unit - Execution cycle – Instruction categories – measure of CPU performance Memory – Input/output devices - BUS-addressing modes. System Software – Assemblers – Loaders and linkers – Compilers and interpreters

#### **Operating system**

Introduction – memory management schemes Process management Scheduling – threads. Problem solving with algorithms- Programming styles – Coding Standards and Best practices - Introduction to C -Programming Testing and Debugging. Code reviews -System Development Methodologies – Software development Models -User interface Design – introduction – The process – Elements of UI design & reports.

#### RDBMS

 $Data \ processing-the \ database \ technology-data \ models-ER \ modeling \ concept \ -notations-Extended \ ER \ features \ -Logical \ database \ design \ -normalization \ -SQL-DDL \ statements \ -DML \ statements \ -DCL \ statements$ 

Writing Simple queries - SQL Tuning techniques - Embedded SQL - OLTP

#### **Objected oriented concepts**

Object oriented programming -UML Class Diagrams– relationship – Inheritance – Abstract classes – polymorphism-Object Oriented Design methodology - Common Base class -Alice Tool – Application of OOC using Alice tool.

#### **Client server computing**

Internetworking – Computer Networks – Working with TCP/IP – IP address – Sub netting – DNS – VPN – proxy servers World Wide Web – Components of web application - browsers and Web Servers URL – HTML – HTTP protocol – Web Applications - Application servers – Web Security.

### REFERENCES

- 1. Andrew S. Tanenbaum, Structured Computer Organization, PHI, 3rd ed., 1991
- 2. Silberschatz and Galvin, Operating System Concepts, 4th ed., Addision-Wesley, 1995
- 3. Dromey R.G., How to solve it by Computers, PHI, 1994
- 4. Kernighan, Ritchie, ANSI C language PHI, 1992
- 5. Wilbert O. Galitz, Essential Guide to User Interface Design, John Wiley, 1997
- 6. Alex Berson, Client server Architecture, Mc Grew Hill International, 1994
- 7. Rojer Pressman, Software Engineering-A Practitioners approach, McGraw Hill, 5th ed., 2001
- 8. Alfred V Aho, John E Hopcroft, Jeffrey D Ullman, Design and Analysis of Computer Algorithms, Addison Wesley Publishing Co., 1998
- 9. Henry F Korth, Abraham Silberschatz, Database System Concept, 2nd ed. McGraw-Hill International editions, 1991
- 10. Brad J Cox, Andrew J.Novobilski, Object Oriented Programming An evolutionary approach, Addison – Wesley, 1991

#### **Course Designers:**

3412	1 13		ES	SENT	TALS	OF II	NFOR		ION		Cate	gory	L	Т	Р	Cı	redit
					IEC	HNU	LUG	ľ			EC-	IE	3	0	0		3
PREA This c install to unc model relatio	MBL course a ation, lerstan l to sto onal da	E aims to and en d the pre da tabase	o prov mphas various ta and and h	ide the izing p s conce l how ow the	e funda princip epts ar to ma e syste	umenta les apj nd fund nipula m mar	al conc plicational ctional te the mages t	cepts o on pac lities o m thro the cor	f Com kages f Data ough q ncurrer	puter op . This c base M puery la nt usage	peration ourse a anagen nguage of data	ns like ims a nent S es, the a in m	e har at fac Syste e eff aulti	edware cilitatir ems, th fective user en	and ng th e me desi nviro	soft e stu thoc gnir	ware ident d and ng of ent
	REQU.	BIF	2 – N11 7 <b>TIVI</b>	79													
1		ovide	basic k	nowled	loe of h	ardwa	re and	softwa	re com	nonents	of com	niters					
2	To st	Idv Pr	oblem	solving	Techn		and pro	oram d	levelon	ment cv	cle	Juicis.					
3	Desig	2n and	l test s	imple	progra	ms in	C lang										
4	Docu	iment	artifac	ts usin	lg com	mon c	uality	standa	ards								
5	Desig	gn sim	ple da	ta stor	e using	g RDB	MS co	oncept	s and	implem	ent						
COU	COURSE OUTCOMES																
On the	e succe	essful	compl	etion o	of the c	ourse,	stude	nts wi	ll be al	ble to							
CO1 termir	Under: nologie	stand t s.	the Ba	sic kno	owledg	ge on h	hardwa	are and	l softw	are		Unde	ersta	nd			
CO2.	Apply nforma	the kr tion to	nowled echnol	lge of 1 ogies	mather	natics	, scien	ice and	l comp	outing ir	n the	Appl	ly				
CO3. Solvir	Under ng Tecl	stand 1 nnique	Progra es	m Dev	volvem	ent C	ycle ar	nd app	ly vari	ous Pro	blem	Appl	ly				
CO4.	Develo	op the	functi	on pro	grams	with a	all the	concej	ots in c	2		Anal	yze				
CO5. Langu	Build age an	and 1 d rela	manipı tional	ılate r langua	elatior iges	al dat	tabase	using	Struc	tured (	Query	Anal	yze				
MAP	PING	WITI	H PRC	OGRA	MME	OUT	COM	ES Al	ND PR	ROGRA	MME	SPE	CIF	IC OU	TCO	OM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PC	012	PSO1	PS	02	PSO3
CO1	S	M	Μ	Μ	M	-	-	-	-	-	-		-	S	Ν	Л	М
CO2	2 S M M M M												-	S	N	Л 	M
CO3	S	M	M	M	M	-	-	-	-	-	-		-	S	N	Л 	M
CO4	S	M	M	M	M	-	-	-	-	-	-		-	S	N	А 	M
CO5	O5 S M M M M S M M																
S- Str	ong; M	l-Med	ium; L	L-Low													

### SYLLABUS Introduction

Basics of computer systems - Various hardware components - Data storage and various Memory units -Central Processing Unit - Execution cycle - Introduce to software and its classifications. Operating system concepts– Introduction – Memory management - Process management - Intercrosses Communication – Deadlocks - File management -Device management.

## **Problem Solving Techniques**

Introduction to problem solving - Computational problem and it's classification - Logic and its types - Introduction to algorithms - Implementation of algorithms using flowchart - Flowcharts implementation through RAPTOR tool - Searching and sorting algorithms - Introduction and classification to Data Structures - Basic Data Structures - Advanced Data Structures

## **Programming Basics**

Introduction to Programming Paradigms and Pseudo Code - Basic programming concepts - Program Life Cycle - Control Structures - Introduction and Demonstration of 1-D Array and 2-D Array - Searching and Sorting techniques - Demonstration Concept of memory references in arrays –Strings - Compiler Concepts - Code Optimization techniques. Structured Programming – Functions – Structures - File Handling - Introduction to Software Development Life Cycle - Industry Coding Standards and Best Practices - Testing and Debugging - Code Review

## **Project Preparation**

Project Specification - Preparation of High level design and Detailed design document, Unit Test Plan and Integrated Test Plan - Coding and Unit Testing activities - Integration Testing.

## RDBMS

Data processing – the database technology – data models-ER modeling concept –notations – Extended ER features-Logical database design - normalization -SQL – DDL statements – DML statements – DCL statements - Joins - Sub queries – Views-Database design Issues.

## TEXT BOOKS

1. Information Technology Planning, Blokdyk Gerardus , Pearson 3rd Edition .

# REFERENCES

- 1. "Computer Organization and Architecture" William Stallings, Pearson 8th Edition
- 2. "Database System Concepts"- Abraham Silberschatz, Hendry F Korth Indian 6th Edition.
- 3. "Computing Fundamentals and C Programming" Paperback 1 Jul 2017 by E Balagurusamy (Author)
- 4. "How to solve it by computer " R G Dromey, Pearson Edition 2006.
- 5. "Software testing "Principle and Practices Desikan Srinivasan, Gopalaswamy Ramesh, Pearson Edition 2005.

## **Course Designers:**

# INFOSYS

3412	1116	INTRODUCTION TO MAIN FRAMES									Cate	gory	L	Т	Р	Credit	
											EC	IE	3	0	0	3	
PREA The m availab widely process	MBLE ainfram bility, se used m sing ver	e hard rviceat ainfrar y large	ware an bility, s ne open workle	nd z/OS calabili cating sy pads in	S opera ity, sect ystem. a secur	ting sy urity, a z/OS is e, relia	stem g nd perf knowr ble, and	rew up formanc n for its d exped	togeth ce. The ability lient ma	er and a operatin to serve inner	re high g syste thousa	ly con m tau inds of	mpler ght ir f user	nentary this concu	of for relation for relation for relation of the second se	iability, z/OS, a and for	
PRER	EQUIS	SITE –	NIL														
COUR	SE OB	JECT	IVES														
1	To ge	t an ide	ea abou	t the ma	ainfram	e hard	ware										
2	To get an idea about z/OS																
3	To learn about JCL																
COUR	COURSE OUTCOMES																
On the successful completion of the course, students will be able to																	
CO1 L Termir	CO1 Learn the Concept of Computer Architecture ,Mainframes OS and Terminology Understand																
CO2. I	Learn th	e Conc	ept of v	virtual s	storage	and its	use in	z/OS				Und	erstar	nd			
CO3 U	CO3 Understand Job Control language- Various statements in JCL- JCL procedures Understand and Apply																
CO4. and rel	Build an ational	nd mar langua	nipulate ges	e relatio	onal da	tabase	using S	Structur	red Que	ery Lang	guage	App	ly				
CO5. A	Analyze	variou	s forms	s of dat	a repres	sentatio	on and s	structur	es supp	orted by	the	App	ly and	d Analy	ze		
MAPP	PING W	ITH F	PROG	RAMM	E OU	ГСОМ	ES AN	D PRO	OGRAI	MME SI	PECIF	IC O	UTC	OMES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	PO1	1 PC	012	PSO1	PSO	2 PSO3	
CO1	S	М	М	М	-	-	-	-	-	-	-		-	S	Μ	М	
CO2	S	М	М	М	-	-	-	-	-	-	-		-	S	-	М	
CO3	S	L	М	М	-	-	-	-	-	-	-		-	S	M	-	
CO4	S	М	М	М	-	-	-	-	-	-	-	<b>S</b> M					
CO5	S	М	М	М	-	-	-	-	-	-	-		-	S	Μ	-	
S- Stro	ng; M-l	Mediur	n; L-Lo	ow						1		1					

## SYLLABUS

### **UNIT –I EVOLUTION OF MAINFRAME HARDWARE**

Overview of Computer Architecture - Classification of Computers - micro, mini, mainframes and super computer -Mainframe computer - key features - benefits - Evolution of Mainframes - Different hardware systems. Mainframes OS and Terminology: Operating systems on mainframes, Batch processing vs. online processing - mainframe operating system. - evolution - concepts of Address space, Buffer management - Virtual storage - paging - swapping -Dataset management in mainframes.

### **UNIT-II Z/OS AND ITS FEATURES**

Z-operating system (Z/OS) - Virtual storage - Paging process - storage Managers - Program execution modes - Address space - Multiple virtual system(MVS) , MVS address space, Z/OS address space - Dataset - sequential and partial dataset - Direct access storage device(DASD) -Access methods - Record formats - Introduction to virtual storage access methods(VSAM) - Catalog - VTOC.

### **UNIT-III INTRODUCTION TO JCL**

Introduction to Job Control language - Job processing - structure of JCL statements - Various statements in JCL - JOB statement - EXEC statement - DD statement - JCL procedures and IBM utility programs.

### **UNIT-IV COBOL PROGRAMMING**

Introduction - History, evolution and Features, COBOL program Structure, steps in executing COBOL. Language Fundamentals - Divisions, sections, paragraphs, sections, sentences and statements, character set, literals, words, figurative constants, rules for forming user defined words, COBOL coding sheet.. Data division – Data names, level numbers, PIC and VALUE clause, REDEIFNES, RENAMES and USAGE clause. Procedure Division - Input / Output verbs, INITIALIZE verb, data movement verbs, arithmetic verbs, sequence control verbs.

### **UNIT-V OVERVIEW OF DB2**

Introduction to DB2 - System Service component, Database Service component, Locking Service component, Distributed Data Facility Services component, Stored Procedure component, catalogs and optimizer. DB2 Objects and Data Types - DB2 Objects Hierarchy, Storage groups, Database, Table space, Table, Index, Clustered index, Synonyms and aliases, Views, Data Types. DB2 SQL programming - Types of SQL statements, DCL, DDL, DML, SPUFI utility. Embedded SQL programming - Host variable, DECLGEN utility, SQLCA, single/multiple row manipulation, cursors, and scrollable cursors.

### **TEXT BOOKS**

- 1. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.
- 2. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002.
- 3. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

### REFERENCES

1. MVS JCL, Doug Lowe, Mike Murach and Associates.

- 2. AS/400 Architecture and Application The Database Machine by Jill T. Lawrence (SPD Publications)
- 3. Gary DeWard Brown, JCL Programming Bible (with z/OS) fifth edition, Wiley India Dream Tech, 2002. Jit M
- 4. z/OS V1R4.0 MVS JCL Reference found online at

http://www-.ibm.com/support/docview.wss?uid=pub1sa22759706



Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

5. z/OS V1R1.0 MVS JCL Reference found online at

http://publibz.boulder.ibm.com/cgibin/bookmgr_OS390/BOOKS/iea2b600/CCONTENTS

6. COBOL - Language Reference, Ver 3, Release 2, IBM Redbook.

7. COBOL - Programming Guide, Ver 3, Release 2, IBM Redbook.

8. Complete CL The Definitive Control Language Programming Guide by Ted Holt and Ernie Malaga (SPD Publication).

9. Nancy Stern & Robert A Stern, "Structured Cobol Programming", John Wiley & Sons, New York, 1973.

10. M.K. Roy and D. Ghosh Dastidar, "Cobol Programming", Tata McGraw Hill, New York, 1973.

11. Newcomer and Lawrence, Programming with Structured COBOL, McGraw Hill Books, New York, 1973.

12. Craig S Mullins, DB2 Developer's Guide, Sams Publishing, 1992.

13. Gabrielle Wiorkowski & David Kull, DB2 Design & Development Guide, Addison Wesley, 1992.

14. C J Date & Colin J White, A Guide to DB2, Addison Wesley.

**Course Designers:** 

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

244	24	120
-≺4 I		170
J T T		120

### MOBILE APPLICATION DEVELOPMENT

CategoryLTPCreditEC-IE3003

#### PREAMBLE

In this modern era almost every hands has a handheld devices. Each handheld device have the computing capability to meet the half the needs of user such as banking, browsing, education and emergency etc. It is a must for a computer engineer to have some basic knowledge about the handheld devices platform and its supporting software development. This course will give adequate knowledge in developing a mobile applications for different such as Android, iOS, Windows.

### **PRE REQUISITE** – NIL

COUR	SE OBJECTIVES									
1.	Understand system requirements for mobile applications									
2.	Generate suitable design using specific mobile development frameworks									
3.	Generate mobile application design									
4.	Implement the design using specific mobile development frameworks									
5.	Deploy the mobile applications in marketplace for distribution									
COUR	SE OUTCOMES									
On the	On the successful completion of the course, students will be able to									
CO1. I	CO1. Expose to technology and business trends impacting mobile applications Understand									

CO2. Understand enterprise scale requirements of mobile applications	Understand
CO3. Familiarize in the Graphics used for Android application development	Apply
CO4. Competent with the characterization and architecture of mobile applications	Apply
<b>CO5.</b> Competent with designing and developing mobile applications using one application development framework.	Analyze

### MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	М	Μ	-	-	М	-	-	-	М	S	М	М
CO2	S	M	М	М	М	-	-	М	-	-	-	М	S	М	М
CO3	S	М	L	М	L	-	-	М	-	-	-	L	S	М	М
CO4	S	М	М	М	М	-	-	М	-	-	-	М	S	М	М
CO5	S	М	М	М	L	-	-	М	-	-	-	L	S	М	М
S- Strong; M-Medium; L-Low															

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### SYLLABUS UNIT I INTRODUCTION

Introduction to mobile applications –Embedded systems -Market and business drivers for mobile applications – Publishing and delivery of mobile applications –Requirements gathering and validation for mobile applications **UNIT II BASIC DESIGN** 

Introduction –Basics of embedded systems design –Embedded OS -Design constraints for mobile applications, both hardware and software related –Architecting mobile applications –User interfaces for mobile applications –touch

events and gestures –Achieving quality constraints –performance, usability, security, availability and modifiability.

### UNIT III ADVANCED DESIGN

Designing applications with multimedia and web access capabilities – Integration with GPS and social media networking applications – Accessing applications hosted in a cloud computing environment – Design patterns for mobile applications.

### UNIT IV TECHNOLOGY I – ANDROID

Introduction – Establishing the development environment – Android architecture – Activities and views – Interacting with UI –Persisting data using SQLite–Packaging and deployment –Interaction with server side applications –Using Google Maps, GPS and Wifi –Integration with social media applications.

### UNIT V TECHNOLOGY II -IOS

Introduction to Objective C –iOS features –UI implementation –Touch frameworks –Data persistence using Core Data and SQLite –Location aware applications using Core Location and Map Kit –Integrating calendar and address book with social media application –Using Wifi -iPhone marketplace.

### TEXT BOOKS

1. Jeff McWherter and Scott Gowell, "Professional Mobile Application Development", Wrox, 2012.

### REFERENCES

1. Charlie Collins, Michael Galpin and Matthias Kappler, "Android in Practice", DreamTech, 2012.

2. James Dovey and Ash Furrow, "Beginning Objective C", Apress, 2012.

3. David Mark, Jack Nutting, Jeff LaMarche and Frederic Olsson, "Beginning iOS 6 Development: Exploring the iOS SDK", Apress, 2013

**Course Designers:** 

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

									Categ	gory	L	Т	Р	Cred	it	
3412	1110		C	YBER	FORE	NSICS			EC	·IE	3	0	0	3	3	
PREAM To learn	<b>IBLE:</b> n compu	ter fore	ensics a	nd • To	becom	e famil	iar with	forens	ics tool	s and lea	irn to ana	alyze ar	nd valida	te forensic	s data	
PRERE	PREREQUISITE: NIL															
COURSE OBJECTIVES																
1     To learn computer forensics																
2	2 To become familiar with forensics tools															
3	3 To learn to analyze and validate forensics data															
4	To leas	rn Ident	tify the	vulnera	bilities	in a giv	ven net	work in	frastruc	cture						
5	5 To Implement real-world hacking techniques to test system security															
COURSE OUTCOMES																
On the successful completion of the course, students will be able to Understand the basics of computer forencies																
CO1. Understand the basics of computer forensics Understand																
CO2. A	a n	umber	of diffe	erent co	mputer	torensi	c tools	to a giv	en scen	ario	A	Apply				
CO3. Ai	nalyze a	nd valio	date for	ensics of	lata.						A	Apply				
CO4:. I	dentify t	he vulr	nerabili	ties in a	given	networl	c infras	tructure	•		I	Apply				
CO5: Ir	nplemer	nt real-v	world h	acking	techniq	ues to t	est syst	em secu	urity		I	Apply				
MAPPI	NG WI	TH PR	OGRA	MME	OUTC	OMES	AND	PROG	RAMM	IE SPEC	CIFIC O	UTCO	MES			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO 3	
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L	
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L	
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-	
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-	
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L	
CO6	S	S	L	-	-	L	М	L	-	-	-	L	S	L	-	
S- Strong; M-Medium; L-Low																

Nit . * 6

Dr. M. NITHYA,

### SYLLABUS

### UNIT I INTRODUCTION TO COMPUTER FORENSICS

Introduction to Traditional Computer Crime, Traditional problems associated with Computer Crime. Introduction to Identity Theft & Identity Fraud. Types of CF techniques - Incident and incident response methodology - Forensic duplication and investigation. Preparation for IR: Creating response tool kit and IR team. - Forensics Technology and Systems - Understanding Computer Investigation – Data Acquisition.

#### UNIT II EVIDENCE COLLECTION AND FORENSICS TOOLS

Processing Crime and Incident Scenes – Working with Windows and DOS Systems. Current Computer Forensics Tools: Software/ Hardware Tools.

### UNIT III ANALYSIS AND VALIDATION

Validating Forensics Data – Data Hiding Techniques – Performing Remote Acquisition – Network Forensics – Email Investigations – Cell Phone and Mobile Devices Forensics

#### UNIT-IV ETHICAL HACKING

Introduction to Ethical Hacking - Footprinting and Reconnaissance - Scanning Networks - Enumeration - System Hacking - Malware Threats - Sniffing

#### UNIT V ETHICAL HACKING IN WEB

Social Engineering - Denial of Service - Session Hijacking - Hacking Web servers - Hacking Web Applications - SQL Injection - Hacking Wireless Networks - Hacking Mobile Platforms.

#### **TEXT BOOKS:**

1. Bill Nelson, Amelia Phillips, Frank Enfinger, Christopher Steuart, —Computer Forensics and Investigations^{II}, Cengage Learning, India Edition, 2016.

2. CEH official Certfied Ethical Hacking Review Guide, Wiley India Edition, 2015.

#### REFERENCES

1. John R.Vacca, —Computer Forensicsl, Cengage Learning, 2005

2. MarjieT.Britz, —Computer Forensics and Cyber Crimel: An Introductionl, 3rd Edition, Prentice Hall, 2013.

3. AnkitFadia — Ethical Hacking Second Edition, Macmillan India Ltd, 2006

4. Kenneth C.Brancik — Insider Computer Fraud Auerbach Publications Taylor & Francis Group-2008.

#### **COURSE DESIGNERS**

### AVANZO TECH

N. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

			CDVI	TOCI				Cate	gory	L	Т	Р		Credit	
3412	1109		NETV	VORK	SECU	RITY		EC	-IE	3	0	0		3	
PREA	MBLI	Ξ:									l				
To une	derstan	d Crypt	ograph	y Theor	ries, Al	gorithm	ns and S	Systems	. and ne	ecessar	y Appro	baches a	and Tec	hnique	s to
build p	protecti	on mec	hanism	s in orc	ler to se	ecure co	omputer	netwoi	:ks						
PRER NIL	EQUI	SITE:													
COUI	RSE O	BJECT	IVES												
1	To un	derstan	d Crypt	ograph	y Theor	ries, Alg	gorithm	is and S	ystems.						
2	To un compu	derstan	d neces works	sary Ap	pproach	les and	Techni	ques to	build p	rotectic	on mech	nanisms	in orde	r to sec	ure
3	To Ur	nderstar	d diffe	rent cry	ptograp	ohic ope	erations	of sym	metric	cryptog	graphic	algorith	nms.		
4	To Ur	nderstar	nd vario	ous Aut	hentica	tion sch	nemes t	o simul	ate diffe	erent ap	oplication	ons			
5	To Ur	nderstar	d vario	us Secu	arity pra	actices a	and Sys	stem sec	urity st	andard	s.				
COUI	RSE O	UTCO	MES												
On the successful completion of the course, students will be able to															
CO1. Understand the fundamentals of networks security, security architecture, threats and vulnerabilities Understand															
CO2. Apply the different cryptographic operations of symmetric Apply															
cryptographic algorithms.															
CO3. Apply the different cryptographic operations of public key Apply															
CO4:	Annly	the var	ious Ai	thentic	ation so	chemes	to sim	ılate dif	ferent						
applic	ations.		10 46 1 10								Apply	/			
CO5:	Unders	tand va	rious S	ecurity	practice	es and S	System	security	v standa	rds.	Apply	/			
MAP	PING	WITH	PROG	RAMN	IE OU	ГСОМ	ES AN	D PRO	GRAN	IME S	PECIF	IC OU	тсом	IES	
CO	DO 1	DOO	DOO	DO 4	DOT	DOC	D07	DOO	DOG	PO1	PO1	PO1	PSO	PSO	PSO
S	POI	PO2	PO3	PO4	P05	PO6	PO/	PO8	PO9	0	1	2	1	2	3
CO1	S	S	L	L	-	-	-	-	-	L	-	L	S	L	L
CO2	S	S	М	-	-	М	М	L	-	L	-	-	S	L	L
CO3	S	S	М	L	-	М	М	L	-	-	L	-	S	L	-
CO4	S	S	М	L	L	L	М	М	М	М	L	L	S	S	-
CO5	S	S	М	М	М	L	М	М	L	М	М	М	S	S	L
CO6	CO6         S         S         L         -         L         M         L         -         -         L         S         L         -														
S- Strong; M-Medium; L-Low															
SYLL. UNIT	ABUS 1 INTR	RODUC	TION								itt	.24			
Securit	y trends	s - Legal	, Ethica	l and Pr	ofession	al Aspe	cts of Se	curity, l	Need for	Securit	y at Mu	ltiple lev	vels, Sec	urity Po	licies
- Mode	el of net	work se	curity –	Security	y attacks	, service	es and m	nechanis	ms – OS	SI securi	ity archi	tecture -	– Classic	al encry	ption

techniques: substitution techniques, transposition techniques, steganography.- Foundations of modern cryptography: perfect security – information theory – product cryptosystem – cryptanalysis.

### UNIT – II SYMMETRIC CRYPTOGRAPHY

MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures - Modular arithmetic-Euclid's algorithm- Congruence and matrices - Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis - Block cipher design principles – Block cipher mode of operation – Evaluation criteria for AES – Advanced Encryption Standard - RC4 – Key distribution.

#### UNIT – III PUBLIC KEY CRYPTOGRAPHY

MATHEMATICS OF ASYMMETRIC KEY CRYPTOGRAPHY: Primes – Primality Testing – Factorization – Euler's totient function, Fermat's and Euler's Theorem - Chinese Remainder Theorem – Exponentiation and logarithm - ASYMMETRIC KEY CIPHERS: RSA cryptosystem – Key distribution – Key management – Diffie Hellman key exchange - ElGamal cryptosystem – Elliptic curve arithmetic-Elliptic curve cryptography.

#### UNIT - IV MESSAGE AUTHENTICATION AND INTEGRITY

 $Authentication\ requirement\ -\ Authentication\ function\ -\ MAC\ -\ Hash\ function\ -\ Security\ of\ hash\ function\ and\ MAC\ -\ SHA$ 

-Digital signature and authentication protocols - DSS- Entity Authentication: Biometrics, Passwords, Challenge Response

protocols- Authentication applications - Kerberos, X.509

#### **UNIT - V SECURITY PRACTICE AND SYSTEM SECURITY**

Electronic Mail security - PGP, S/MIME - IP security - Web Security - SYSTEM SECURITY: Intruders - Malicious

software – viruses – Firewalls. TEXT BOOKS:

1. William Stallings, Cryptography and Network Security: Principles and Practice, PHI 3rd Edition, 2006. **REFERENCES:** 

1. C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd

2. BehrouzA.Foruzan, Cryptography and Network Security, Tata McGraw Hill 2007.

3. Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC

World, Prentice Hall, ISBN 0-13-046019-2

**COURSE DESIGNERS** 

### AVANZO TECH

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

								Cate	gory	L	Т	Р		Credit	
3412	1108	MAN	CLO AGEN	UD DA IENT A	TABA ANDSH	SE ECURI	ГҮ	EC	-IE	3	0	0		3	
PREA	MBL	E:						1			1		I		
This	syllabu	ıs is in	tended	for the	e Engi	neering	stude	nts and	l enabl	es ther	n to lea	an abo	ut Cloi	ud Dat	abase
Mana	igemen	t and S	Securit	y. This	s syllał	ous con	itains i	introdu	ction a	bout th	he clou	id com	puting	, sales	force
archit	architectures, sales force UI and building blocks. Thus, this syllabus focuses on to know about Cloud														
Datab	Database Management and Security.														
PREREQUISITE:															
NIL COURSE OR HECTIVES															
COURSE OBJECTIVES															
1 To understand cloud computing security concepts															
2 To study various cloud services															
3	3 To apply cloud computing in collaboration with other services														
4	4 To understand the cloud Database management														
5	5 To apply cloud computing online														
COU	RSE O		MES												
On the	e succe	sstul co	mpletio	on of th	e cours	e, stude	nts will	be able	e to						
CO1	: Unde	erstand	basic	service	conce	pts of c	cloud c	omput	ing		Unde	erstand			
CO2	: Unde	erstand	and ap	oply sal	les forc	e archi	itecture	e			Unde	erstand			
CO3	: Appl	y virtu	alizatio	on tech	niques						Appl	y			
<b>CO4</b>	: apply	the at	tacks c	concept	ts in Sa	lesforc	e Buil	ding B	locks		Appl	y			
CO5	: Unde	erstand	and ap	oply leg	gal issu	les in c	loud se	ervices			Appl	y			
MAP	PING	WITH	PROG	RAMN	1E OU	ГСОМ	ES AN	D PRO	OGRAN	AME S	PECIF	IC OU	TCOM	IES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М		М		М	-	-	-	-	-	-		S	М	-
CO2		М	L		L	-	-	-	-	-	М	М	S		М
CO3			S	М		-	-	-	-	-	-			-	
CO4	S			М		-	-	-	-	-	-	М	S	М	М
CO5		М			М	-	-	-	-	-	-	М	S		-
CO6	М		М		М	-	-	-	-	-	-		S	М	_
S-Str	ong; M	-Mediu	m; L-L	ow	1	11		1	1	1	1	1	1	1	I

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg. V.M.K.V. Engg. College, Salem.

SYLLABUS Unit 1. (9)
Introduction to Cloud computing – CRM – Problems faced by the IT industry – Introduction to SaaS –
PaaS -IaaS - What is Salesforce.
<b>Practical</b> : Introduction to JAVA programming.
<b>Unit 2:</b> (9) Salesforce Architecture – Conventional Database tables and objects – Standard and Custom objects – Objects and Fields – Datatypes – Aggregating and Validating Data - Relational Data Modelling
<b>Practical</b> : Learning and Building of Schemas
Unit 3: (9)
What is UI – Introduction to salesforce UI - Customizing the salesforce UI – Salesforce terminology – Page layouts – App builder – Automating Business Process – Workflow rule – Process builder – Email Templates – Salesforce Application elements. <b>Practical</b> : Salesforce Building Blocks
<b>Unit 4:</b> (9) Data Security – Profiles and Roles – Audit and Troubleshooting: Audit logs – Debug logs –Email logs.
Practical: Creating users, Profiles, Roles and Groups.
Unit 5: (9)
Database management – Reports and Dashboard management - Data loader – Uploading RelationalData – Standard and Custom Report types – Scheduling Report andDashboards.
Practical (sample):
• Create an app for Event Management that takes care of – Event Registrations, Confirmations,
Cancellations, Speaker associations, and other event-related activities.
• Ticket booking system.
COURSE DESIGNERS

Salem InfoTech

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121003FOR ENGINEERSOE-IE3003PREAMBLE: Engineers are in a position to do Decision Making during every activity in the industry. The acti ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpret through data analysis and reporting in every transaction helps the organization to do decision making to ru organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the reso to do cost and Financial decisions with optimum resources for the betterment of the organization	vities e and etation in the ources												
<b>PREAMBLE:</b> Engineers are in a position to do Decision Making during every activity in the industry. The actir ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpret through data analysis and reporting in every transaction helps the organization to do decision making to rule organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources for the betterment of the organization.	vities e and etation in the ources												
ranging from Operation to Non-Operation during the routine functions of the organization. Especially, Finance and Accounting also becomes the part of responsibility of every engineer to do data analysis activities. His interpretation through data analysis and reporting in every transaction helps the organization to do decision making to run the organization effectively and efficiently. Finance and Accounting Practices enable the engineers to handle the resources to do cost and Financial decisions with optimum resources for the betterment of the organization. <b>PREREQUISITE:</b> Not Required													
PREREQUISITE: Not Required	COURSE OBJECTIVES:												
COURSE OBJECTIVES:													
1. To understand the concepts and conventions to prepare Income Statement, and Balance Sheet.													
2. To apply the various methods to claim depreciation and													
3. To practice fundamental investment decision through capital budgeting techniques.													
4. To analyse cost-volume profit analysis for decision making and analyse standard costing techniques.													
ordering quantities.													
COURSE OUTCOMES:													
After successful completion of the course, students will be able to													
CO1: Understand the importance of recording, book keeping and reporting of the Understand													
business transaction.													
CO2: Identify and Apply suitable method for charging depreciation on fixed assets. Apply													
CO3: Analyse the various methods of capital budgeting techniques for investment Apply													
decision.													
CO4: Justify the scope of cost-volume-profit analysis, standard costing, and marginal Analyse													
CO5: Estimation of working capital requirements of the organization. Evaluate													
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													
Cos         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12         PSO1         PSO2         I	PSO3												
CO1         -         M         L         S         M         -         S         -         M         M         L         M         L	М												
CO2 L L M - L L L M L L	-												
CO3 - M - M L L S M - L - L	М												
CO4 L L - S L - L M L M L	М												
CO5 L - L S L M M L - L M M	-												
S- Strong; M-Medium; L-Low													
SYLLABUS:         Introduction: Business Environment – Book Keeping and Accounting – Accounting Concepts and Conventions –         Double entry system – Preparation of journal, ledger and Trial balance – Final Accounts THYA,         Deprecation: Meaning – Causes - Methods of Calculating Depreciation: Straight Line Method, Diminishing Balance         Method and Annuity Method.         173         V.M.K. V. Engg. College, Salem.         Capital Budgeting Decisions: Meaning – Nature & Importance of Investment Decisions – Types - Financial statement													

analysis and interpretation - Types of Analysis - Objectives - Tools of Analysis - Ratio Analysis: Objectives, Uses and Limitations - Classification of Ratios: Liquidity, Profitability, Financial and Turnover Ratios - Funds Flow Analysis and Cash Flow Analysis: Sources and Uses of Funds, Preparation of Funds Flow statement, Uses and Limitations: Pay Back Period – Accounting Rate of Return – NPV – IRR - Profitability Index.

**Marginal Costing:** Marginal Cost - Breakeven Analysis - Cost Volume Profit Relationship - Applications of Standard and marginal Costing Techniques.

**Working Capital Management:** – Types of Working Capital – Operating Cycle – Determinants of Working Capital – Receivables Management – Inventory Management – Need for holding inventories – Objectives – Inventory

Management Techniques: EOQ & Reorder point - ABC Analysis - Cash Management - Motives for holding cash.

#### **Text Book**

- 1. Kesavan, C. Elenchezhian, and T. Sunder Selwyan, "Engineering Economics and Financial Accounting", Firewall Media, 2005.
- 2. Kasi Reddy .M and Saraswathi .S, "Managerial Economics and Financial Accounting", PHI Learning Pvt., Ltd. 2007.

#### **Reference Book**

- 1. Periyasamy .P, "A Textbook of Financial, Cost and Management Accounting", Himalaya Publishing House, 2010.
- 2. Palanivelu V.R., "Accounting for Managers", Lakshmi Publications, 2005.
- Mark S Bettner, Susan Haka, Jan Williams, Joseph V Carcello, "Financial and Management Accounting", Mc-Graw-Hill Education, 2017

#### **COURSE DESIGNERS:**

S.No	Name of the Faculty	Designation	Department	Mail ID
1.	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in
2.	Dr. Rajeshkumar	Assistant Professor	Management Studies	<u>rajesh.mba@avit.ac.in</u>

Hitl.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3412	34121004INNOVATION, PRODUCT DEVELOPMENT AND								Category	L	Т	Р	Credit
			COMN	MERC		ATION		c	)E-IE	3	0	0	3
PREA	MBLE		<b>c</b> ·		1	1		. 1		1	1 .	1.	
com	merciali nologica	zation (	of innov ation to	ation a market	and new	product	ts in fa	st-paced	l, high-tech	markets an	d mate	ching	
PRER	EOUIS	ITE - N	Jot Real	uired	oppon	unities.							
COUR	PSF OR	IFCTI	VFS	anea									
		se stu	lents u	nderstar	nd mult	inle_ners	spectiv	annrog	ach in orga	nization to	cantur	e kn	owledge
1	and cr	eativity	to dev	velop s	uccessf	ul produ	icts and	d servic	es for Vol	atile, Uncer	tain, (	Comp	lex and
	Ambig	guous (	VUCA)	world.		•						1	
2	Inculc	ate a di	sruptive	though	nt proce	ess to ger	nerate i	deas for	concurrent	and futurist	ic prol	blems	of
3	Impro	y in gen	eral and	$\frac{1}{1} \max_{ing of c}$	ts in pa	rticular v	which i	ocus on	commercia	alization	nolog	v into	
5	successful products and services												
4	4 Critically assess and evaluate innovation policies and practices in organizations especially from a												
cultural and leadership point of view													
	5 Explain why innovation is essential to organizational strategy – especially in a global environment												
COUR	COURSE OUTCOMES												
On the successful completion of the course, students will be able to													
CO1: Understand the role of innovation in gaining and maintaining competitive advantage Understand													
CO2: I	CO2: Integrate the innovation basis and its role in decision making especially under uncertainty Apply												
CO4: H	Having r	oroblem	solving	g ability	v - solvi	ing socia	l issue	s and bu	siness prob	lems		Apr	olv
CO5: 0	Compreh	nend the	e differe	nt sour	ces of i	nnovatio	n		1			App	oly
MAPP	PING W	TTH P	ROGR	AMME	OUT	COMES	AND	PROGR	RAMME S	PECIFIC C	OUTC	OME	ES
COs	Р	Р	Р	Р	Р	P	Р	PO	PO9	PO10	PO	11	P012
	01	02	03	04	05	06	07	8					
CO1	М	-	-	-	-	M	S	S	-	М	-		-
CO2	S	S	S	Μ	M	M	-	-	-	-	-		-
<u>CO3</u>	S	S	S	M	M	M	-	-	-	-	-		-
CO4	S	S	S	M	M	M	-	-	-	-	-		-
S- Stro	S ng·M-N	S Леdium	· L-Lov		111	111	_	_		_		-	_
SYLL	ABUS:	Tearann	, L L01	•									
Introd	uction (	to Inno	vation	Manag	ement	- Innova	tion – Y	What it i	s? Why it I	Matters? - In	novati	ion as	a Core
Busine	ess Proce	ess – sys	stem thi	nking f	or inno	vation –	Frame	work for	System Th	ninking - sys	tem th	inkin	ig tools
Creati	ng New	Produ	cts and	Servic	es - Pro	duct and	l Servio	e Innov	ation – Exp	bloiting Ope	n Inno	vatio	n and
Collaboration – The Concept of Design Thinking and Its Role within NPD and Innovation – framework for design thinking													
ucsign	unnent	5							Dr. M.	of & Head.			
Creati	ng New	Produ	icts and	l Servi	ces - Pi	roduct a	nd Serg	vice Int	vation put	Exploiting Q	pen Ir	nova	tion and
Collab	oration	-The C	oncept	of Desi	ign Thi	nking ar	nd Its' H	Role wit	hin NPD a	nd Innovatio	on – fi	rame	work for
design	design thinking Conturing Innovation Outcome New Venture Penefits of Innovation and Learning from Innovation												

Building Innovative Organization and Developing Innovation Strategy - Globalization for Innovations, Innovating for Emerging Economies and Role of National Governments in Innovation

**New Product Brand Development and Pricing Strategies** - Importance of Brand decisions and Brand identity development; Pricing of a new product, Pre-test Marketing

**The Product offer** Selecting Market opportunity and Designing new market offers-Concept Generation and Evaluation, Developing and Testing Physical offers - Pre-launch, during launch and Post launch preparations;

### **Text Book:**

1. Joe Tidd, John Bessant (2013), Managing Innovation: Integrating Technological, Market and

Organizational Change, 5th edition, Wiley.

### **Reference Books:**

Schilling, M (2013), Strategic management of technological innovation, 4th edition, McGraw Hill Irwin.
 Allan Afuah (2003), Innovation Management: Strategies, Implementation and Profits, 2nd edition, Oxford University Press.

3. Michael G. Luchs, Scott Swan, Abbie Griffin (2015), Design Thinking: New Product Development Essentials from the PDMA, Wiley-Blackwell.

4. John Boardman, Brian Sauser (2013), Systemic Thinking: Building Maps for Worlds of Systems, 1st edition, Wiley.

5. Rich Jolly (2015), Systems Thinking for Business: Capitalize on Structures Hidden in Plain Sight, Systems Solutions Press

CUUKSE DESIGNEKS:								
S.No	Name of the faculty	Designation	Department	E-Mail Id				
1	Dr.B.Rajnarayanan	Professor	Management Studies	rajnarayanan@vmkvec.edu.in				
2	Dr. Rajeshkumar	Associate Professor	Management Studies	rajesh.mba@avit.ac.in				

Nitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3412	1007	G	OCIAI	ENT		NEUDS	IIID	(	Category	L	Т	Р	Credit
5412.	1007	3	UCIAL		CEPKE	NEUKS.	HIP	0	E-IE	3	0	0	3
PREA	PREAMBLE												
Soci	al entre	preneur	ship inv	volves t	he crea	tivity, in	nagina	tion and	innovation	n often asso	ciated	with	
entre	epreneur	ship.											
PRER	EQUIS	ITE - N	lot Requ	ured									
COUR	RSE OB	JECTI	VES										
1	1 To provide students with a working knowledge of the concepts, opportunities and challenges of											nges of	
	social entrepreneurship.												
2	To der	emonstrate the role of social entrepreneurship in creating innovative responses to critical social											
2	needs (e.g., hunger, poverty, inner city education, global warming, etc)												
5	10 engage in a collaborative learning process to develop a better understanding of the context and domain of social entrepreneurship.												
4	To help prepare you personally and professionally for meaningful employment by reflecting on the												
	issues	of socia	of social entrepreneurship.										
5	Engage with a diverse group of social entrepreneurs												
COUR	RSE OU	тсом	ES										
On the	success	ful com	pletion	of the c	course, s	students	will be	able to					
CO1: E	CO1: Explain the concept social entrepreneurship and distinguish its elements from across a												
continu	ntinuum of organizational structures from traditional nonprofits to social enterprises to Understand												
traditio	CO2: Analyze the operations of a human service organization using social entrepreneurial												
orienta	orientation and industry assessment and diagnostic tools. Apply												
CO3: A	D3: Apply the Social Business Model Canvas and lean startup methods for planning,												
develop	ping, tes	sting, la	unching	and ev	aluating	g social c	hange	ventures	S. 1	U.		Арр	лу
CO4: 0	Compare	e fundin	g optior	ns for so	ocial ch	ange ven	tures.					App	oly
CO5: 7	The outc	omes of	f social	entrepr	eneursh	ip are fo	cused of	on addre	ssing persi	stent social		Apr	oly
problei	ms parti	cularly t	to those	who a	e margi	inalized of	or poor						
MAPP	PING W	ITH PI	ROGRA	AMME	COUTC	COMES	AND	PROGR	AMME S	PECIFIC O	OUTC	OME	S
COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO8	PO9	PO10	PO	11	P012
CO1	М	-	-	-	-	M	S	S	_	М	-		-
CO2	S	S	S	М	М	M	-	-	-	-	-	-	-
CO3	S	S	S	М	М	M	-	-	-	-	-	-	-
CO4	S	S	S	М	М	M	-	-	-	-	-	-	-
CO5	S	S	S	М	М	M	-	-	-	-	-	-	-
S- Stro	ng; M-N	Aedium	; L-Low	V		·					•		

Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

## SYLLABUS:

**Social entrepreneurship** – dimensions of social entrepreneurship – social change theories – equilibrium and complexity – theory of social emergence

Social entrepreneurs – mindset, characteristics and competencies – developing a social venture

sustainability model - feasibility study - planning - marketing challenges for social ventures

**Microfinance**– MFI (Micro Finance Institutions) in India – regulatory framework of MFI – Banks and MFIs – sustainability of MFI – Self Help Groups– successful MFI models

 $\label{eq:constant} \textbf{Angel Investors \& Venture Capitalists} - difference - valuation of firm - negotiating the funding agreement$ 

- pitching idea to the investor

**Corporate entrepreneurship** – behavioral aspects – identifying, evaluating and selecting the opportunity – venture– location – organization – control – developing business plan – funding the venture – implementing corporate venturing in organization.

## **Text Book:**

1. Constant Beugré, Social Entrepreneurship: Managing the Creation of Social Value, Routledge, 2016.

2. Björn Bjerke, Mathias Karlsson, Social Entrepreneurship: To Act as If and Make a Difference, Edward Elgar Publishing, 2013.

## **Reference Books:**

1. Wei-Skillern, J., Austin, J., Leonard, H., & Stevenson, H. (2007). Entrepreneurship in the Social Sector (ESS). Sage Publications.

2. Janus, K. K. (2017). Social startup success. New York, NY: Lifelong Books.

3. Dancin, T. M., Dancin, P. A., & Tracey, P. (2011). Social entrepreneurship: A critique and future directions.

4. Alex Nicholls, Social Entrepreneurship: New Models of Sustainable Social Change, OUP Oxford, 2008.

5. David Bornstein, Susan Davis, Social Entrepreneurship: What Everyone Needs to Know, Oxford University Press, 2010.

## **COURSE DESIGNERS**

COURSE	DESIGNERS			
S.No	Name of the faculty	Designation	Department	E-Mail Id
1	Dr.B.Rajnarayanan	Assistant Professor	Management Studies	rajnarayanan@vmkec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

24121001			ENGINEERING STARTUPS AND							Cate	egory	L	Т	Р	Credit	
34121	LO01			ENTE MA	KEPRI ANAG	ENEU EME	RIAL NT			0	E-IE	3	0	0	3	
PREAN	<b>IBLE</b> :	:										I		II		
A startu	ıp mea	ns co	mpany	, initia	ted by	indiv	idual	innova	ator or	entrep	reneurs	to sea	rch for	a repe	atable and	d
scalable	busine	ess mo	odel. N	lore sp	pecific	ally, a	startu	p is a 1	newly	emerge	d busin	ess ven	ture tha	t aims	to develog	р
a viable	busine	ess mo	del to	meet a	a mark	etplace	e need	s or w	ants in	an opti	mum m	anner.				
PRERF	QUIS	ITE:	Not R	equired	1											
COURS	SE OB	JECI	TIVES	:												
<b>1.</b> To un	Idersta	nd the	basics	s of Sta	artups	Manag	gemen	t and c	ompoi	nents.						
2. To analyze the startups fund management practices																
<b>3.</b> To practice the various kinds of stocks and employment considerations in startups.																
<b>4.</b> To apply the importance of intellectual property rights and its procedures.																
5. To explore the entrepreneurial mindset and culture.																
COURSE OUTCOMES:																
After su	ıccessf	ul cor	npleti	on of t	the co	urse, s	tuden	ts will	be ab	le to						
CO1: 1	Explain	the c	oncept	ofeng	gineeri	ing sta	rtups,	objecti	ives an	d funct	ions and	d its co	mponen	its. U	Jnderstan	d
<b>CO2:</b> A	<b>CO2:</b> Analyze the startups funding issues and remuneration practices in startups business. Analyse															
<b>CO3:</b> A	<b>CO3:</b> Analyze the various kinds of stocks and employment opportunities and consideration in Analyse															
startups	busine	ess.														
CO4: (	Compai	re and	contra	ast the	variou	is form	ns of ir	ntellect	tual pro	operty p	protection	on and	practice	. <i>I</i>	Analyse	
<b>CO5:</b> Explore the entrepreneurial mindset and culture that has been developing in Evaluates																
с	ompan	ies of	all siz	es and	indus	tries.										
MA	PPINC	G WI	TH PR	OGR	AMM	E OU	TCON	MES A	ND P	ROGR	AMMI	E SPEC	CIFIC (	DUTC	OMES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	Μ	-	-	-	-	М	Μ	S	-	М	-	Μ	-	L	L	
CO2	S	S	М	М	М	L	-	-	-	-	-	Μ	L	L	-	
CO3	S	S	S	М	М	М	-	-	-	-	-	Μ	L	-	М	
CO4	S	S	S	М	М	М	-	-	-	-	-	Μ	-	М	L	
CO5	S	S	-	М	М	М	-	-	-	-	-	Μ	М	М	М	
S- Stro	ng; M-	Medi	um; L	-Low												
	DUG										ati	H.r	ላ			
SYLLA	BUS:			<b>a</b> .			-		~		C			<b>.</b> -		
Elemen	ts of a	SUCC	essful	Start	up: S	Startup	Proce	ess — (	`reate	Manage	ement [	Leam a	nd Boa	rd of I	Directors -	

Elements of a successful Start up: Startup Process – Create Management Learn and Board of Directors – Evaluate market and Target Customers – Define your product or service Propreparation of business plan specific problems and challenge in startup. 179 **Funding Issues and Remuneration Practices:** Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Equity Ownership – Other compensation – Employment Contracts

**Stock Ownership & startup Employment Considerations:** Stock ownership: Risk- Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares - Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

**Protecting Intellectual Property:** Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

## Startup Capital Requirements and Legal Environment:

Identifying Startup capital Resource requirements - estimating Startup cash requirements - Develop financial assumptions- Constructing a Process Map - Positioning the venture in the value chain - Launch strategy to reduce risks- Startup financing metrics - The Legal Environment- Approval for New Ventures- Taxes or duties payable for new ventures..

## **Text Book:**

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guide for the High-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entrepreneurship Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

## **Reference Books:**

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	marugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in A. NITHYA,

### **COURSE DESIGNERS:**
3/12	1006	NEW	VENTI	URE PI	ANNI	NG AN	D	Cat	egory	L	Т	Р	Credit
5412	1000		Μ	ANAG	EMEN	T		O	E-IE	3	0	0	3
PREA Cont vent	<b>PREAMBLE</b> Contemporary methods and best practices for the entrepreneur to plan, launch, and operate a new venture and creation of a business plan												
PRER	PREREQUISITE - Not Required												
COURSE OBJECTIVES													
1	1 An opportunity for self-analysis, and how this relates to success in an entrepreneurial environment.												
2	Inform	nation a	nd unde	erstandi	ng nece	essary to	launch	n and gro	w an entre	preneurial	venture	e.	
3	A real	istic pre	eview of	fownin	g and o	perating	an ent	repreneu	rial ventur	e.			
4	An entrepreneur must understand the diversity, emotional involvement, and workload necessary to succeed.												
5	The op	pportun	ity to de	evelop a	u busine	ess plan.							
COUR	COURSE OUTCOMES												
On the successful completion of the course, students will be able to													
CO1: H compo	Explain 1 nents.	the cond	cept of i	new ver	iture pla	anning, o	objecti	ves and f	unctions a	nd its		Un	derstand
CO2: A	Analyze	the bus	iness pl	an issue	es and r	emunera	ation p	ractices in	n startups ł	ousiness.		Ap	ply
CO3: I whethe	Explore er to "go	an entre for it"	preneur	rial idea	to the	point wł	nere yo	ou can int	elligently a	and decide		Ар	ply
CO4: 0 key dif	Compare ferences	e and co s and sin	ntrast tl nilaritie	he differes.	rent for	ms entre	epreneu	urial envi	ronment in	terms of t	heir	Ap	ply
CO5: I	Explore	the busi	ness pla	an and b	ousiness	s model	canvas	for your	idea.			Ap	ply
MAPP	PING W	ITH P	ROGR	AMME	OUTO	COMES	AND	PROGR	RAMME S	PECIFIC	OUTC	COM	ES
COs	Р	Р	Р	Р	Р	P	Р	PO	PO9	PO	PO	11	P012
	01	02	03	04	05	06	07	8		10			
CO1	Μ	-	-	-	-	М	S	S	-	М	-		-
CO2	S	S	S	М	М	M	-	-	-	-	-		-
CO3	S	S	S	М	М	M	-	-	-	-	-		-
<b>CO4</b>	S	S	S	М	М	M	-	-	-	-	-		-
CO5	S	S	S	М	М	M	-	-	-	-	-		-
S- Stro	S- Strong; M-Medium; L-Low												

CHITH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

## SYLLABUS:

**STARTING NEW VENTURE:** Opportunity identification - Search for new ideas - Sources of innovative ideas - Techniques for generating ideas - Entrepreneurial imagination &creativity - The role of creative thinking - Developing your creativity - Impediments to creativity.

**METHODS TO INITIATE VENTURES:** Pathways to new venture - Creating new ventures - Acquiring an existing venture - Advantages of acquiring an established venture - Examination of key issues – Franchising - How a franchise works and franchise law - Evaluating franchising opportunity.

**THE SEARCH FOR ENTREPRENEURIAL CAPITAL:** The venture capital market - Criteria for evaluating new venture proposals - Evaluating venture capitalists - stage of venture capital financing - Alternate sources of financing for Indian entrepreneurs - Bank funding - State financial corporations - Business incubators and facilitators - Informal risk capital - Angel investors.

**THE MARKETING ASPECTS OF NEW VENTURE:** Developing a marketing plan - Customer analysis - Sales analysis - Competition analysis - Market research - Sales forecasting - Sales Evaluation - Pricing decisions.

**BUSINESS PLAN PREPARATION FOR NEW VENTURE:** Business plan concept - Pitfalls to avoid in business plan - Developing a well conceived business plan - Elements of a business plan - Harvest strategy - Form of business organization - Legal acts governing businesses in India .

### **Text Book:**

1. The Successful Business Plan, Secrets & Strategies, Rhonda Abrams, Published by The Planning Shop Titan, Ron Chernow, Random House

2. Osterwalder, A. and Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, Hoboken, NJ: John Wiley & Sons

### **Reference Books:**

1. Blackwell, E. (2011). How to Prepare a Business Plan: Create Your Strategy; Forecast Your Finances; Produce That Persuasive Plan. Kogan Page Publishers.

2. Levi, D. (2014). Group Dynamics for Teams. Sage Publications, Inc. Thousand Oaks.

3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.

4. Business Model Generation by Osterwalder and Pigneur.

## **COURSE DESIGNERS**

S.No	Name of the faculty	Designation	Department	E-Mail Id			
1	M.Manickam	Associate Professor	Management Studies	manickam@vmkec.edu.in			

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

341210	202	Р	INTF 'ROPI	ELLE( ERTY	CTUAL RIGHTS	CTUAL Category L T P Credit										
								OE-IE		3	0	0			3	
PREAN	<b>IBLE:</b>	The co	ourse is	design	ed to intro	oduce	e funda	amental	aspec	cts of Int	tellectua	al proper	ty Rights	s to stud	ents who	are
going to	play a	major	role in	develo	pment and	1 man	nagem	ent of ir	nova	tive proj	jects in	industrie	s.			
PREREQUISITE: NIL																
COURSE OBJECTIVES:																
1. To introduce fundamental aspects of Intellectual property Rights																
2.	To diss	eminat	e know	vledge	on patents	and	copyri	ights								
3. To disseminate knowledge on trademarks, Design and Geographical Indication (GI),																
4. To disseminate knowledge on Plant Variet, Layout Design Protection and create awareness about																
C	current	trends	in IPR													
5.	To diss	eminat	e know	vledge	on Legisla	tion (	of IPR	Rs and A	lterna	te Dispu	ute Reso	olution				
COURS	SE OU	ГСОМ	IES:													
After su	iccessfi	ul com	pletior	n of the	course, s	tude	nts wi	ill be ab	le to							
CO1: U	ndersta	nd the	importa	ant of i	ntellectual	l prop	perty r	ights						Und	erstand	
CO2: A	pply for	r the pa	atents											App	ly	
CO3: U	ndersta	nd and	apply	for the	copyrights	s								Und	erstand	
CO4: Understand the important of trademarks										App	ly					
CO5: Appreciate the importance of IPR and its related issues Understand																
	MAP	PING	WITH	I PRO	GRAMM	ΕΟ	JTCO	MES A	ND F	PROGR	AMMI	E SPECI	FIC OU	JTCOM	ES	
COs	PO 1	PO 2	PO 3	PO 4	PO P	0	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
001	<u> </u>	<u>⊢</u>	+	•					-	Ť	+ -	+-	-	+	<u> </u>	

	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	L	-	-	-	-	L	S	L	-	L	-	L	L	Μ	-
CO2	L	S	S	М	М	L	-	-	-	-	-	L	М	L	-
CO3	L	S	L	М	М	L	-	-	-	-	-	L	М	L	-
CO4	L	S	S	S	Μ	L	-	-	-	-	-	L	L	L	-
CO5	L	S	S	М	-	L	-	-	-	-	-	L	М	L	-

S- Strong; M-Medium; L-Low

# SYLLABUS:

# Unit 1 - Overview of Intellectual Property

STELLID CO.	
Unit 1 - Overview of Intellectual Property	HH.M
Introduction and the need for intellectual property right (IPR) - Kinds	of Intellectual Property Rights: Patent, Copyright,
Trade Mark, Design, Geographical Indication, Plant Varieties and La	ayout Design A Genetic Resources and Traditional
Knowledge - Trade Secret - IPR in India : Genesis and development	- IPR in abroad - Major International Instruments
concerning Intellectual Property Rights: Paris Convention, 1889,3the	Berne Convention, 1886, the Universal Copyright
Convention, 1952, the WIPO Convention, 1967, the Patent Co-operation	n Treaty, 1970, the TRIPS Agreement, 1994.

#### Unit 2 - Patents & Copyright

**Patents** - Elements of Patentability: Novelty, Non Obviousness (Inventive Steps), Industrial Application - Non - Patentable Subject Matter - Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties - Patent office and Appellate Board

**Copyright** - Nature of Copyright - Subject matter of copyright: original literary, dramatic, musical, artistic works; cinematograph films and sound recordings - Registration Procedure, Term of protection, Ownership of copyright, Assignment and licence of copyright - Infringement, Remedies & Penalties – Related Rights - Distinction between related rights and copyrights

#### Unit 3 - Trademarks, Design and Geographical Indication (GI)

**Trademarks:** Concept of Trademarks - Different kinds of marks (brand names, logos, signatures, symbols, well known marks, certification marks and service marks) - Non Registrable Trademarks - Registration of Trademarks - Rights of holder and assignment and licensing of marks - Infringement, Remedies & Penalties - Trademarks registry and appellate board

**Design:** Meaning and concept of novel and original - Procedure for registration, effect of registration and term of protection

**Geographical Indication (GI):** Meaning, and difference between GI and trademarks - Procedure for registration, effect of registration and term of protection

#### Unit 4 - Plant Varieties, Layout Design and Indian National Intellectual Property Policy

**Plant Variety Protection:** Plant variety protection: meaning and benefit sharing and farmers' rights – Procedure for registration, effect of registration and term of protection.

**Layout Design Protection:** Layout Design protection: meaning – Procedure for registration, effect of registration and term of protection.

**Indian National Intellectual Property Policy:** India's New National IP Policy, 2016 – Govt. of India step towards promoting IPR – Govt. Schemes in IPR – Career Opportunities in IP - IPR in current scenario with case studies

#### UNIT - V: Legislation of IPRs and Alternate Dispute Resolution

**Legislation of IPRs:** The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act - Patent Ownership and Transfer, Patent Infringement, International Patent Law

Alternate Dispute Resolution: Alternate Dispute Resolution and Arbitration – ADR Initiatives –Reason for Choosing ADR – Advantages and Disadvantages of ADR – Assessment of ADR's – Litigation – Arbitration - Effective Mechanism for Business Issues.

184 Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

#### **Text Books:**

1. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.

2. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.

#### **Reference Book**:

1. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

#### **COURSE DESIGNERS:**

S.No	Name of the Faculty	Designation	Department/ Name of the College	Mail ID
1	P. S.Balaga napathy	Associate Professor	Management / AVIT	dydirectormanagementstudies@avit.ac.in
2	A. Mani	Associate Professor	Management / VMKVEC	mani@vmkvec.edu.in

M.Hitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

3442	21001	30	PRI	NTIN	IG AI	ND II	S	Cate	gory	L		Т	P Credit				
-			API	PLIC	ATIC	DNS		OE	E-EA	3		0	0		3		
Prea The selecti enviro	mble course on of 1 nment.	e is de nateri	signe al an	d to ii d equ	npart ipmei	know nt and	ledge devel	and sk op a p	ills re roduc	lated to t using	o 3D p this to	rintin echnie	g techno que in Ii	ologies, ndustry	4.0		
Prere	equisit	e – N	IL														
Cour	se Ob	jectiv	e														
1 To discuss the basic concepts and procedure followed in 3D printing methods																	
2	2 To construct a CAD model for a required product																
3	To ide	ntify	the us	e of d	liffere	ent ma	terial	and sup	port s	structu	res						
4	To exp	perime	ent wi	ith dif	feren	t 3d p	rinting	proces	SS								
5	5 To identify the defects.																
Course Outcomes: On the successful completion of the course, students will be able to																	
CO1.	1.     Demonstrate the various 3D Printing methods     Understand																
CO2.	2. Develop CAD Models ,Import and Export CAD data and generate Apply																
CO3.	Sele	ct a sj	pecifi	c mat	erial f	for the	given	applic	ation.				Apply				
CO4.	Sele	ct a 3	D prii	nting	proce	ss for	an app	plicatio	on.				Apply				
CO5.	Able	e to id	entify	the I	Produ	ct defe	ects a	fter pos	st proc	cessing			Apply				
Map	ping w	ith P	rogra	mme	Out	come	s and	Progra	amme	e Spec	ific O	utcon	nes				
		РО	PO	PO	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO		
	POI	2	3	4	5	6	7	8	9	0	1	2	1	2	3		
	M	L 5	- M	-	- M	-	-	-	-	-	-	-	M	-	-		
CO2	S M	<u>з</u> м	IVI	- T	IVI	-	-	-	-	-	-	-	M	-	-		
03			L			-	-	-	-	-	-	-		$\sim$	-		
CO4																	
CO5	M	<u>S</u>	M	M	-	-	-	-	-	-	-	Dr. M	NITHY.	A, - d.	L		
S- St SVLI	rong; . ABUS	VI-IVI	ediun	n; L-	LOW				18	6	V.M.K	Comp	uter Science gg. College	e & Engg , Salem.			
3D PF	3D PRINTING & CAD FOR ADDITIVE MANUFACTURING (7 Hrs.)																

Introduction, Process, Classification, Advantages, Additive V/s Conventional Manufacturing processes, Applications. CAD Data formats, Data translation, Data loss, STL format.

#### ADDITIVE MANUFACTURING TECHNIQUES (12Hrs.)

Stereo- Lithography, LOM, FDM, SLS, SLM, Binder Jet technology. Process, Process parameter, Process Selection for various applications. Additive Manufacturing Application Domains: Aerospace, Electronics, HealthCare, Defence, Automotive, Construction, Food Processing, Machine Tools

#### MATERIALS (8 Hrs.)

Polymers, Metals, Non-Metals, Ceramics. Various forms of raw material- Liquid, Solid, Wire, Powder; Powder Preparation and their desired properties, Polymers and their properties. Support Materials

#### ADDITIVE MANUFACTURING EQUIPMENT (10 Hrs.)

Process Equipment- Design and process parameters, Governing Bonding Mechanism Common faults and troubleshooting, Process Design

### POST PROCESSING & PRODUCT QUALITY (8 Hrs.)

Post Processing Requirement and Techniques, Product Quality Inspection and testing, Defects and their causes

Text B	ooks										
1	Lan Gibson, Davi Prototyping to Dir	d W. Rosen and B rect Digital Manuf	rent Stucker, "Addit facturing", Springer,	ive Manufacturing Technologies:Rapid 2010.							
2	Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.										
Refer	ence Books										
1	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017.										
2	Andreas Gebhardt Tooling, Rapid N	t, "Understanding Manufacturing", H	Additive Manufactu anser Publisher, 201	ring: Rapid Prototyping, Rapid 1.							
3	J.D. Majumdar an Material Science,	d I. Manna, "Lase 2013.	r-Assisted Fabrication	on of Materials", Springer Series in							
Cours	se Designers										
S.No	Faculty Name Designation Department/Na me of the Email id										
1	L.Prabhu Associate Mech / AVIT prabhu@avit.ac.in										

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

	344210012		Category	L	Т	Р	Credit					
	944210012	INDUSTRIAL ROBOTICS	OE-EA	3	0	0	3					
Prea	Preamble											
The o	objective of	f this course is to impart know	vledge about indu	istria	l robot	ts for their	r control and					
desig	gn.											
Prez NIL	requisite :											
Cou	ırse Object	ive										
1	Be exposed	to the fundamentals of robots										
2	To learn abo	out Robot kinematics and dynamic	CS									
3	To learn dif	ferent types of sensors used in rob	ots and its control									
4	To understa	nd the different types of actuation	systems used in rob	ots								
5	To understand the robot control hardware and their interfacing and programming of robots.											
Cou	Course Outcomes: On the successful completion of the course, students will be able to											
CC	01. Underst	and the basic configurations ar	nd kinematic system	ns of	robots	U	Inderstand					
CC	CO2.Solve problems of robot kinematics and dynamicsApply											

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

CO3.	Understand the different types of sensors used in robot systems and their applications, different types of control systems used in robots	Understand
CO4.	Understand and applications of the different types of actuators used in robot systems	Apply
CO5.	Understand the robot control hardware systems and their interfaces, different robot programming techniques for various applications.	Apply

### Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	L	-	-	-	-	-	-	S	-	L
CO2	S	S	М	М	-	М	-	-	-	-	-	-	S	-	L
CO3	S	М	М	М	-	М	-	-	-	-	-	-	S	-	L
CO4	S	S	М	М	-	L	-	-	-	-	-	-	S	-	L
CO5	S	S	L	S	-	S	-	-	-	-	-	-	S	-	L

### S- Strong; M-Medium; L-Low

### SYLLABUS

## INTRODUCTION TO ROBOTICS

Types and components of a robot, Classification of robots, closed-loop and open loop control systems. Kinematics systems; Definition of mechanisms and manipulators, Social issues and safety.

### ROBOT KINEMATICS AND DYNAMICS

Kinematic Modelling: Translation and Rotation Representation, Coordinate transformation, DH parameters, Jacobian, Singularity, and Statics - Dynamic Modelling: Equations of motion: Euler-Lagrange formulation.

## SENSORS AND VISION SYSTEM and ROBOT CONTROL

Sensor: Contact and Proximity, Position, Velocity, Force, Tactile etc. - Introduction to Cameras, Camera calibration, Geometry of Image formation, Euclidean/ Similarity/Affine/Projective transformations - Vision applications in robotics.

Basics of Robot control: Transfer functions, Control laws: P, PD, PID. - Non-linear and advanced controls.

## ROBOT ACTUATION SYSTEMS

Actuators: Electric, Hydraulic and Pneumatic; Transmission: Gears, Timing Belts and Bearings, Parameters for selection of actuators.

## CONTROL HARDWARE AND INTERFACING

Embedded systems: Architecture and integration with sensors, actuators. components. Programming for Robot Applications. Dr. M. NITHYA

#### Text Books

Prof & Head.

Dept. of Computer Science &

Saha, S.K., "Introduction to Robotics, 2nd Edition? McGraw 4KIV Higher Education, New Delhi, 2014. 1

2	Μ	littal R.K. and Nagra	ath I.J., "Robotics	and Control", Tata Mc	Graw Hill.							
Ref	eference Books											
1	Ghosal, A., "Robotics", Oxford, New Delhi, 2006.											
2	Niku Saeed B., "Introduction to Robotics: Analysis, Systems, Applications", PHI, New Delhi.											
3	3 Steve Heath, "Embedded System Design", 2nd Edition, Newnes, Burlington, 2003											
4	Me Me	erzouki R., Samanta echatronic System: I	ray A.K., Phathak Modeling, Control	P.M. and Bouamama E and Diagnosis", Spring	3. Ould, "Intelligent ger.							
Cou	Course Designers											
S.I	S.No Faculty Name Designation Department/Name Email id											
1	1 Prof. J.Satheesbab		Associate Professor	Mech/VMKVEC	satheesbabu@vmkvec.edu.in							

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

36921001	BIOMOLECULES - STRUCTURE AND	Category	L	Т	Р	С
	FUNCTION	OE-EA	3	0	0	3

#### PREAMBLE

Biomolecules like carbohydrates, proteins, fat are vital components of any living system. Basic knowledge about them helps in maintaining a healthy lifestyle, free of sickness and a general awareness about hygiene.

#### **PREREQUISITE** NIL

COUR	RSE OBJECTIVES									
1	1 To give an overview of importance of biomolecules									
2	2 To elaborate the structure of proteins and nucleic acids and its role in disease.									
3	3 To enumerate the role of carbohydrates and their cellular function in physiology and pathology									
4	To enumerate the role of lipids and their cellular function in physiology and p	oathology.								
5	To briefly cholesterol and its role in diseases									
COUR	RSE OUTCOMES									
After t	he successful completion of the course, learner will be able to									
CO1. I	Relate the basics of biomolecules in and around him	Understand								
CO2. U	Understand the structure of biomolecules such as proteins and nucleic acids	Understand								
CO3. I	Discover the role of carbohydrates in healthy and diseased conditions	Apply								
CO4. I	Relate disfunctioning of lipids with disease	Analyse								

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

CO5. Criticize the role of cholesterol in diseases.

Evaluate

MAPI	PING V	WITH	I PRC	OGRA	MME	E OUI	ГСОМ	IES AN	ND PF	ROGRA	MME	SPEC	FIC O	UTCO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	L	-	-	L	-	-	-	-	-	-	-	L	-
CO2	S	М	S	-	-	М	-	-	-	-	-	-	-	L	-
CO3	М	L	М	М	-	S	-	-	-	-	-	-	-	L	-
CO4	L	L	L	L	S	L	-	-	S	-	-	М	L	М	М
CO5	S	-	L	L	-	М	-	-	-	-	-	S	S	М	-
S_Stro	na M	Medi	um• I	JOW											

S- Strong; M-Medium; L-Low

#### SYLLABUS PROTEINS

Protein – Structure – primary, secondary, tertiary. Types of proteins and their function. Role of each type of Protein in Health and Disease.

## NUCLEIC ACIDS

Nucleic Acids – Components of nucleic acids, Conformational parameters. Nucleic acids – Types of DNA and RNA. DNA Polymorphism, Circular DNA, Supercoil DNA, DNA-Protein interactions. Role of nucleic acids in Health and disease

## CARBOHYDRATES

Carbohydrates – Introduction. Types – monosaccharide, disaccharide, oligosaccharide and polysaccharides. Structure of each type. Artificial sugars. Role of carbohydrates in Health and Disease

## FATTYACIDS AND LIPIDS

Fatty acids- Introduction, nomenclature, types - Saturated and unsaturated fatty acids, Essential and non-essential fatty acids.

Lipids – Introduction, Classification - simple and compound lipids, phospholipids, Cholesterol and its role in health and disease, Micelles and Liposomes : Applications in biology and medicine

## CELL MEMBRANE AND CELL SIGNALING

Cell membrane - components and architecture, Various membrane models including Fluid-mosaic model. Ion channels, Receptors, Signaling molecules, Signaling mechanism, Role of cell signaling in Health and Disease. Inter-relationship of biomolecules.

## TEXTBOOKS

1. Biophysical Chemistry, Part II, Techniques for the study of biological structure and function, by Cantor C.R. and Schimmel P R., W.H. Freeman and Company, 1980.

2. Nucleic Acids in chemistry and Biology, by Blackburn G.M. and gait M.J., IRL Press, 1990.

3. Biochemistry, by Voet D. and Voet J.G., John Wiley and sons, 1995.

4. Physical Biochemistry, by Freifelder D., W.H. Freeman and company, 1976-1982.

HH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

COUI	COURSE DESIGNERS													
S.No ·	Name of the Faculty	Designation	Department	Mail ID										
1	Dr.P.David Annaraj	Assistant professor	Pharmaceutical Engineering	davidannaraj@vmkvec.edu.in										
2	Ms.S.Sowmiy a	Assistant Professor	Pharmaceutical Engineering	sowmiya.vmkvec@vmrf.edu.in										

CHTH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

3	6921002	PHARMACOGENOMICS	ACOGENOMICS Category L											
			OE-EA	0	0	3								
PRI	EAMBLE													
Pha	Pharmacogenomics involves the study of the relationship between an individual's genetic makeup and													
his or her response to a drug. Pharmacogenetics, a component of pharmacogenomics, is the study of the														
relationship between a single gene and its response to a drug.														
PREREQUISITE - NIL														
COURSE OBJECTIVES														
1 Discuss about the basic knowledge about pharmacogenomics and drug design using genomic														
	applications for drug action and toxicity.													
2	2 Perform how individualization of drug therapy can be achieved based on a person's genetic makeup while reducing unwanted drug effects.													
3	While reducing unwanted drug effects.													
5	responses to	various drugs.	interences betw		ui v iuua		i ancei							
4	Formulate or	n medicine skills acquired by the student ar	nd his action in	differer	nt patho	ologie	ès							
5	Develop acq	uire knowledge about the influence of gener	tic alterations o	n the th	erapeu	tic ef	fect and							
	adverse react	tions of the drugs, from a perspective of ind	ividualized the	rapy.										
CO	URSE OUTC	COMES												
Afte	or the successf	ul completion of the course, learner will be	able to											
CO	.Recognize th	ne effect of genetic differences between ind	ividuals in the	outcom	e of l	Reme	mber							
drug	g therapy and i	in drug efficacy and toxicity.												
CO2	2. Describe th	ne role of single nucleotide polymorphism	n as a biomar	ker for	the 1	Unde	rstand							
pred	liction of risk,	therapeutic response and prognosis of mali	gnancies.											
CO3	3. Utilize and	manage the new genomics based tools as	they become a	vailable	e as	Unde	rstand							
well	well as make best treatment choices.													
CO	CO4. Examine the applications of genomics principles in drug action and toxicology Analyze													
COS	5. Validation of	of case studies related to pharmacogenomics	5		1	Analy	/ze							
MA	MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES													

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	L	L	L	L	L	L	-	L	L	L	L	L	L	
CO2	М	М	Μ	М	L	-	-	-	Μ	-	L	L	L	L	-
CO3	S	S	S	S	L	-	-	-	Μ	-	L	L	L	L	-
CO4	Μ	М	Μ	М	Μ	-	-	-	S	-	L	L	М	L	-
CO5	L	L	L	L	S	-	-	-	Μ	-	М	М	S	М	-
S_ Str	ong M_	Mediu	m∙ I _l												

S- Strong; M-Medium; L-Low

### SYLLABUS

#### PHARMACOGENOMICS AND PERSONALIZED MEDICINE

Pharmacogenetics - Roots of pharmacogenomics and it is not just pharmacogenomics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development. Concept of individualized drug therapy, Drivers and the promise of personalized medicine, Strategies for application of pharmacogenomics to customize therapy, Barriers.

### HUMAN GENOME

Expressed sequence Tags (EST) and computational biology, Microbial genomics, computational analysis of whole genomes, computational genome analysis, Genomic differences that affect the outcome of host pathogen interactions, Protein coding genes, repeat elements, genome duplication, analysis of proteome, DNA variation, Biological complexity. Single nucleotide polymorphisms (SNP's) in Pharmacogenomics - approaches, number and types of SNPs, Study design for analysis, Analytical issues, Development of markers.

### ASSOCIATION STUDIES IN PHARMACOGENOMICS

Viability and Adverse drug reaction in drug response, Multiple inherited genetic factors influence the outcome of drug treatments, Association studies in pharmacogenomics, Strategies for pharmacogenomics Association studies, Benefits of Pharmacogenomics in Drug R & D.

### GENOMICS APPLICATIONS FOR DRUG ACTION, TOXICITY AND DESIGN

Platform technologies and Pharmaceutical process, its applications to the pharmaceutical industry, Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies. The need of protein structure information, protein structure and variation in drug targets-the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket. 195 V.M.K.V. Engg. College, Salem.

### PHARMACOGENOMICS – CASE STUDIES

Study of pharmacogenomics of human P-Glycoprotein, drug transporters, lipid lowering drugs, chemotherapeutic agents for cancer treatment.

#### **TEXT BOOKS**

- 1. Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics" Second Edition, American Society of Health-System Pharmacists, 2017.
- Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 3. Yan Q, "Pharmacogenomics in Drug Discovery and Development" Humana Press, 2nd Edition, 2014.

#### REFERENCES

- 1. Brazeau, D.A. and Brazeau, G.A. "Principles of the Human Genome and Pharmacogenomics" American Pharmacist Association, 2011
- Werner, K., Meyer, U.A., Tyndale, R.F. "Pharmacogenomics", Second Edition, Taylor and Francis, 2005.
- Langman, L.J. and Dasgupta, A. "Pharmacogenomics in Clinical Therapeutics", Wiley Blackwell, 2012

#### **COURSE DESIGNERS**

S.No.	Name of the Faculty	Designation	Department	Mail ID				
1	Ms. R. Jaishri	Assistant Professor	Pharmaceutical Engineering	jaishri@vmkvec.edu.in				

HH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

240	1000	N	IUNIC	IPAL S	SOLID	AND	WASTI	E	С	ategory		L	T P Credi				
342	21002			MAN	AGEN	1ENT				OE-EA		3	0	0	3		
Pream Structu the ob machin	ble ure is ject o nes ai	an ar r syste nd nat	ranger em so ural o	nent a organ bjects	nd org ized. l such a	ganiza Materi as bio	tion of ial strue logical	inter ctures orga	relateo s inclu nisms,	d eleme de m ai minera	ents in a nd e ob als and	a mater jects si chemic	ial obje 1ch as l cals.	ect or sy puilding	stem, or s and		
Prere	quisi	te: N	il														
Course	Obje	ctives															
1. The on-site/off-site process in gof the same and the disposal methods.																	
2. T	<ol> <li>The student is expected to know about the various effects and disposal options for the municipal solid waste.</li> </ol>																
3.	Гhe c	ollect	ion ar	nd sup	ply of	f wate	er										
4.	The o	ffsite	proce	essing	invol	ved ir	n site										
Course	Outc	omes															
On the	e suco	cessfu	ıl com	pletic	on of t	he co	urse, si	tuden	ıts wil	l be ab	le to						
Co1. A	Apply	y aboi	it the	types	of wa	ste &	Sourc	es				A	nalyze				
Co2. <i>I</i>	Apply	y the o	onsite	Stora	ge &	Proce	ssing					А	pply				
Co3. <i>A</i>	Apply	y aboi	it the	collec	tion &	k tran	sfer th	e was	ste			A	pply				
Co4. <i>A</i>	Apply	y the p	proces	ss of o	ffsite	proce	essing					А	pply				
CO5.	Appl	y abo	ut the	solid	waste	e dispo	osal					A	pply				
Mapp	oing v	with <b>F</b>	Progra	amme	e Outo	comes	s and I	Prog	ramm	e Spec	ific Ou	utcom	es				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	s	M	L												s		
CO2	s	M	L	S	-	-	-		-		-	-		-	s		
CO3	S	М	М	S	-	-	-		-		-	-	<u>s</u>				
CO4	S	М	М	М	-	-	-	-	-	-	-	-	S				
CO5	O5 S M M L S																
S-Stro	ong; M	I-Medi	um; L-	Low													

Т

Т

Т

Т

Т

Г

Т

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

#### Syllabus

## SOURCESANDTYPESOFMUNICIPALSOLIDWASTES

Sources and types of solid wastes-major legislation-monitoring responsibilities-Effects of disposal of solid wastes - Quantity – factors affecting generation of solid wastes; characteristics – methods of sampling and characterization– public health effects. Principle of solid waste management – social & economic aspects; Public awareness; Role of NGOs; Legislation.

### **ON-SITESTORAGE&PROCESSING**

On-site storage methods-material sused for containers-on-site segregation of solid was tes-

publichealth&economicaspectsofstorage-optionsunderIndianconditions-Critical Evaluation of Options.

### COLLECTIONANDTRANSFER

Methods of Collection – types of vehicles – Manpower requirement – collection routes; transfer stations – selection of location, Anaerobic digestion, RDF and Incineration and co-generation of energy using waste, Pyrolysis of solid Waste operation & maintenance; options under Indian conditions.

#### **OFF-SITEPROCESSING**

Processing techniques and Equipment; Resource recovery from solid wastes – composting, incineration, Pyrolysis –options under Indian conditions- cradle to grave management concept, Prevailing laws of hazardous waste management- Risk assessment.

### DISPOSAL

Dumping of solid waste; sanitary land fills-site selection, design and operation of sanitary land fills-site selection, design and d

Leachatecollection&treatment.

#### TextBooks

1. GeorgeTchobanoglouset.al., "IntegratedSolidWasteManagement", McGraw-HillPublishers, 2002.

- 2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 1994.
- 3. Charles A. Wentz; "Hazardous Waste Management", McGraw-Hill Publication, Latest publication, (1992).

#### ReferenceBooks

- 1. R.E.LandrethandP.A.Rebers, "MunicipalSolidWastes-problemsandSolutions", LewisPublishers, 1997.
- 2. BhideA.D.andSundaresan,B.B., "SolidWasteManagementinDevelopingCountries", INSDOC, 1993.
- 3. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous, McGraw Hill Publication, (2002).
- 4. Bagchi, A., Design, Construction, and Monitoring of Landfills, (2nd Ed). Wiley Interscience, ISBN: 0-471-30681-9.

5. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development,

Government of India, New Delhi, (2000).

S.No.	NameoftheFaculty	Designation	Department	MailID
1	Mrs.P.Subathra	AssistantProfessor	Civil/AVIT	subathra@avit.ac.in

Hitl.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

		-							Categor	·y	L	T P Cred					
342210	01	J	DISASI	EK KI	SK MA	INAGEN	VIENI		OE-E	A	3	0 0 3					
Preamble														<u> </u>			
This cours built struct mitigating	e deals tures, at various	with th nd Haz s hazar	ne vario ard As ds such	ous dis sessme n that t	asters ent pro heir im	and to e cedure i pact on	expose in Indi comn	the stu a. This nunitie	udents a s course es is redu	bout the also de iced.	e measu als with	res, its e n the met	ffect aga hods of	ainst			
Prerequisite																	
		NIL															
Course Outo	omes																
1 To U	Jnderst	and bas	sic con	cepts i	n Disa	ster Mai	nagem	ent									
2 To I	To Understand Definitions and Terminologies used in Disaster Management																
3 To I	To Understand the Challenges posed by Disasters																
4 To 1	To understand Impacts of Disasters																
COURSE	I o understand impacts of Disasters																
On the s	uccessf	ul com	, pletion	of the	course	e, studer	nts wil	l be at	ole to								
CO1.Unde	CO1. Understand the various types of disaster viz Hydrological, Coastal and Marine																
Disasters, Windand	Atmosp Vater E	oheric I Driven I	Disaste Disaste	rs, Geo ers.	ologica	l, Mass	Move	ment a	nd Land	l Disast	ers,	Understa	ind				
CO2.Ident disaster an	ify the d Sugg	potenti est suit	al defic able re	ciencie media	s of ex l meas	isting b ures.	ouilding	gs for	Earth qu	ıake		Understa	ind				
CO3.Deriv measures	ve the g for Eart	uidelin hquake	es for t e disast	he pre er.	caution	nary mea	asures	and re	ehabilita	tion		Apply					
CO4.Deriv	ve the p	rotecti	on mea	sures a	against	floods,	cyclo	ne, and	d landsli	des.		Apply					
CO5.Unde	rstand	the effe	ects of	disaste	ers on b	ouilt stru	uctures	s in Inc	dia			Understa	ind				
MAPPING	WITHP	ROGR	AMME	OUTC	OMES	ANDPR	OGRA	MME	SPECIFI	COUTO	COMES						
COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1 M	-	-	L	-	-	-	-	-	-	-	-	L	-	-			
CO2 M	М	L	L	-	М	-	-	-	-	-	-	L					
CO3 S	M	S	М	- T	L	-	М	-	-	-	-	<u>M</u> L -					
C04 S	M I	-	- T		-	-	-	-	-	-	-						
S-Strong; N	I-Mediu	ım; L-L	ow	l		<u>                                     </u>						L	-	<u> </u>			

## SYLLABUS **INTRODUCTION:**

INTRODUCTION:	M
Concept of disaster; Different approaches; Concept of Risk; L	evels of disasters; Disaster phenomena and events
(Global, national and regional); Disasters: Types of disasters -	- Earthquake, Landslide, Flood, Drought, Fire etc
Dos and Don'ts during various types of Disasters.	D. M. NITHYA

## RISKASSESSMENTANDVULNERABILITYANALYSIS:

- Prof & Head. Response time, frequency and forewarning levels of different hazards, Character is tics and damage potential of 199 natural hazards; hazard assessment; Dimensions of vulnerability factors; vulnerability assessment; Vulnerability and disaster risk; Vulnerabilities to flood and earthquake hazards

#### **DISASTER MANAGEMENT MECHANISM:**

Conceptsofriskmanagementandcrisismanagement;Disastermanagementcycle;ResponseandRecovery;Development,Prevention,MitigationandPreparedness;Planningfor relief, Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response andRecovery Phases of Disaster

#### **DISASTER RESPONSE:**

Mass media and disaster management; Disaster Response Plan; Communication, Participation, and Activation of Emergency Preparedness Plan; Logistics Management; Psychological Response; Trauma and StressManagement;RumourandPanicManagement;MinimumStandardsofRelief;ManagingRelief;Funding.

#### **DISASTER MANAGEMENT IN INDIA:**

Strategies for disaster management planning; Steps for formulating a disasterriskreductionplan;DisastermanagementActandPolicyinIndia;Organisationalstructurefordisastermanagement tinIndia;Preparation of state and district disaster management plans, , Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake- holders

#### **TEXTBOOKS:**

- 1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423 2.
- Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. ISBN-10:1259007367, ISBN-13: 978-1259007361]
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

#### **REFERENCES:**

- 1. AbarquezI.&MurshedZ.CommunityBasedDisasterRiskManagement:FieldPractitioner'sHandbook,AD PC,Bangkok,2004.
- 2. Goudie, A. Geomorphological Techniques, Unwin Hyman, London 1990.
- 3. Goswami, S.C. Remote Sensing Application in North East India, Purbanchal Prakesh, Guwahati, 1997.

N.Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

- 4. ManualonNaturalDisasterManagementinIndia,NCDM,NewDelhi,2001.
- 5. DisasterManagementinIndia, MinistryofHomeAffairs, GovernmentofIndia, NewDelhi, 2011.
- 6. NationalPolicyonDisasterManagement,NDMA,NewDelhi,2009.
- 7. DisasterManagementAct.(2005), MinistryofHomeAffairs, GovernmentofIndia, NewDelhi, 2005.

 CourseDesigners

 S.No.
 Name of the Faculty
 Designation
 Department
 MailID

 1
 Ms.S.IsparaXavier
 Assistant Professor
 Civil/AVIT
 isparaxavier.civil@avit.ac.in

N. Hith

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem.

34621001		GRE	EN P	OWEF	R GEN	IERAT	FION SY	YSTEM	IS (	Category	y L	T P Credit							
										OE-EA	3	0	0		3				
PREAM The cours sources of technolog and socia	BLE se preso of energy used l policy	ents the gy and to harn are into	variou investi less the egral c	us sour gates 1 ese res ompon	cces of the con ources ents of	f renew ntribut will b f the co	vable end ion they be preser ourse.	ergy inc can ma nted. Dis	eluding ake to t scussion	wind, so the ener ns of eco	olar, a gy pro onomi	nd bio ofile o c, env	oma of th iror	ss as p ne nati nment,	ootential on. The politics				
PREREC	UISIT	TE: NII		-															
COURSI	E OBJI	ECTIV	ES																
1 Understand the nexus between energy, environment, and sustainable development																			
2 Appreciate energy ecosystems and its impact on environment																			
3 Learn basics of various types of renewable and clean energy technologies																			
4 Serve as bridge to advanced courses in renewable energy																			
COURSE OUTCOMES																			
On the successful completion of the course, students will be able to																			
CO1: Explain renewable energy sources & systems. Understand																			
CO2: App	CO2: Apply engineering techniques to build solar, wind, tidal, geothermal, biofuel, fuel Apply																		
cell, Hydi	cell, Hydrogen, and sterling engine.																		
CO3: An	alyze a	nd eval	uate th	ne imp	licatio	n of re	enewable	energy	. Conce	epts in s	olving	5	A	Analyz	e				
numerica	l proble	ems pert	aining	to sola	ar radia	ation g	eometry	and wir	nd energ	gy syster	ns.								
CO4: De	monstr	ate self	-learn	ing ca	pabilit	y to c	lesign &	establi	sh rene	ewable e	energy	7	A	Analyz	e				
systems.														-					
CO5: cre	ate exp	perimen	ts to a	assess	the pe	erforma	ance of	solar P	V, sola	r therma	al and			Apply					
biodiesel	system	S																	
MAPPIN	IG WI	ГH PRO	OGRA	MME	OUT	COM	ES AND	PROG	RAMN	AE SPE	CIFI	C OUI	ГСС	OMES	•				
COS P CO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1	PSO2	PSO3				
CO1 S		_	_	M	_	L	L	_	_	_	_	M		_	_				
CO2 S	M	S	L	M	-	L	M	-	М	-	-	-		_	-				
CO3 S	-	-	-	M	-	-	M	М	-	-	_	L		-	-				
CO4 S	-	-	_	M	-	L	-	-	-	-	M	-		-	-				
CO5 S	M	S	L.	M			M	_	М	Mit	1.2	M		L					
CO6 S	-	-	-	M	-	L	L	-		N		-		-	-				
S- Strong	 : M-Me	 edium: I	L-Low						D	Prof	HYA, Head.								
	,	· · · · · · · · · · · · · · · · · · ·	_0.1				20	)2 <b>F</b>	V.M.K.	Computer S V. Engg. C	cience d	k Engg Salem.							

## SYLLABUS

## ENERGY

Introduction to the nexus between energy, environment and sustainable development, Energy sources overview and classification, sun as the source of energy, fossil fuel reserves and resources - overview of global/ India's energy scenario. Energy consumption models – Specific Energy Consumption

## ECOLOGY AND ENVIRONMENT

Concept and theories of ecosystems, - energy flow in major man-made ecosystems- agricultural, industrial and urban ecosystems - sources of pollution from energy technologies and its impact on atmosphere - air, water, soil, and environment - environmental laws on pollution control, The environmental protection act: Effluent standards and ambient air quality, innovation and sustainability, eco-restoration: Phyto-remediation.

## **RENEWABLE SOURCES OF ENERGY**

Solar Energy: Solar radiation: measurements and prediction. Indian's solar energy potential and challenges, solar energy conversion principles and technologies: Photosynthesis, Photovoltaic conversion, and Photo thermal energy conversion. Wind Energy: Atmospheric circulations, atmospheric boundary layers, classification, factors influencing wind, wind shear, turbulence, wind energy basics and power Content, wind speed monitoring, Betz limit, wind energy conversion system: classification, characteristics, and applications. Ocean Energy: Ocean energy resources-ocean energy conversion principles and technologies: ocean thermal, ocean wave & ocean tide

### BIOENERGY

Biomass as energy resources; bio-energy potential and challenges, Classification, and estimation of biomass; Source and characteristics of biofuels: Biodiesel, Bioethanol, Biogas. Types of biomass energy conversion systems - waste to energy conversion technologies

## **OTHER ENERGY SOURCES AND SYSTEMS**

Hydropower, Nuclear fission, and fusion-Geothermal energy: Origin, types of geothermal energy sites, site selection, geothermal power plants; hydrogen energy, Magneto-hydro-dynamic (MHD) energy conversion – Radioisotope Thermoelectric Generator (RTG), Bio-solar cells, battery & super capacitor, energy transmission and conversions.

## **TEXTBOOKS:**

- **3.** Energy and the Environment, Ristinen, Robert A. Kraushaar, Jack J. AKraushaar, Jack P. Ristinen, Robert A., 2nd Edition, John Wiley, 2006,
- 4. Energy and the Challenge of Sustainability, World Energy assessment, UNDP, N York, 2000.

### **REFERENCE BOOKS:**

- 3. Ocean Energy: Tide and Tidal Power by R. H. Charlier and Charles W. Finkl, Springer 2010
- 4. Introduction to Electrodynamics (3rd Edition), David J. Griffiths, Prentice Hall, 2009

COUR	SE DESIGNERS			title
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Devarajan	Professor	EEE	devarajan@ymkvec.edu.in
2	Mr. R. Sathish	Assistant Professor	203 EEE V.M.	sathish @vmkvec.edu.in
3	Mr. V.Rattankumar	Assistant Professor	EEE	rattankumar@avit.ac.in

346210	202		INDI	ISTRI	AL DI	RIVES	ς ανσ		OMA	TION		Catego	ry ]	L	Т	Р	C
01021	002		пцрс						010111			OE-EA	A	3	0	0	3
Preamble	e																
To introd	uce fou	ndatio	on on tl	he prin	ciples	of driv	ves & a	automa	ation a	nd the	ir elem	ents witl	h the ir	npl	emen	tatio	n.
PREREC	QUISIT	<b>E</b> :N	IL														
COURSI	E OBJI	ECTIV	VES														
1		To e	xplore	the va	rious A	AC,DO	C & Sp	ecial I	Machir	ne Driv	ves for	industria	al App	lica	tion		
	2	To s	o study about the various Open loop and closed loop control schemes for drives														
3		To k	o know about hardware implementation of the controllers using PLC														
4		To s	o study the concepts of Distributed Control System														
5		To u	o understand the implementation of SCADA and DCS														
COURSE	E OUT	COM	MES														
On succe	ssful co	completion of the course, the students will be able to															
СО	1	To u chara	nderst acteris	and wand tics an	orking d selec	princ tion c	iples o riteria.	of vario	ous typ	bes of	motors	s, differe	nces,		Unde	erstai	nd
CO	2	To a conc	pply th epts in	ne knov variov	wledge us indu	e in se istrial	lection applic	of mo ations	otors, ł	neating	effect	s and bra	aking		Aj	pply	
CO	3	To e	xplain	contro	ol meth	ods of	f speci	al driv	es						Unde	erstai	nd
CO	4	To c Auto	carry o omatio	out pro n prob	ogram lems ii	ming 1 indus	using stries.	PLC	and u	ise of	vario	us PLC	s to		Unde	erstai	nd
CO	5	To c same	liscuss e in co	super mplex	visory autom	contr ation a	ol and areas	data	acquis	ition 1	nethod	l and us	e the		Unde	erstai	nd
CO	5	To u Inter Auto	inderst facing omatio	and and and devic	nd use es to	e logio enhano	cal ele ce con	ements trol &	and comm	use of nunica	f Hum tion as	an Mac spects of	hine		Unde	erstai	nd
Mapping	with Pr	ogran	nme ou	itcome	s and I	Progra	mme S	Specifi	c Outc	omes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	]	PSO2	PS	503
CO1	S	S	S L - S S - L										\ <u>-</u>		-		L
CO2	М	-	- M - S L M - M L												-		-
CO3	М	-	М	-	S	L	М	-		L	Dr. M. I	VITHYA, f & Head.	-		М		-
CO4	S	-	S	-	S	М	М	^L 204	_ D	V.M.K.	Compute V. Magg	r Science &	alem.		-		L
CO5	S	М	S	S         S         M         S         -         M         L         L         M         -         L         M													

#### INTRODUCTION

Working principle of synchronous, Asynchronous & stepper motors, Difference between Induction and servo motors, Torque v/s speed characteristics, Power v/s. Speed characteristics, Vector duty induction motors, Concepts of linear and frameless motors, Selection of feedback system, Duty cycle, , V/F control, Flux Vector control.

#### INDUSTRIAL DRIVES

Electric drive – Definition – Parts – Types -Individual – Group – Multi motor. Stepper motor – Definition – Step angle – Slewing rate -Types -Variable reluctance -Hybrid – Closed loop control of stepper motor – Drive system(any one) – logic sequencer – Optical encoder. Servo motor – Definition – Types -DC servo motor – Permanent magnet DC motors – Brushless motor – AC servo motor -Working of an AC servo motor in control system – Induction motors – Eddy current drive for speed control of induction motors.

#### PROGRAMMABLE LOGIC CONTROLLER

Definition Conventional Hard wired logicRelays- Features of PLC- Advantages of PLC over relay logic -

Block diagram of PLC -Programming basics of PLC – Ladder logic -Symbols used in ladder logic – Logic functions – Timers – Counters – PLC networking – Steps involved in the development of Ladder logic program – Program execution and run operation by PLC – Ladder logic diagram for liquid level operation. List of various PLCs and their manufactures.

### DISTRIBUTED CONTROL SYSTEM

Evolution of distributed control system -Definition of DCS – Functional elements of DCS – Elements of local control unit -Interfaces-Types of information displays – Architecture of anyone commercial DCS – Advantages of DCS -Selection of DCS – List of various DCS and their manufactures.

#### SUPERVISORY CONTROL & DATA ACQUISITIONS

Introduction to Supervisory control & data Acquisitions, distributed Control System (DCS): computer networks and communication in DCS. different BUS configurations used for industrial automation – GPIB, HART and OLE protocol, Industrial field bus – FIP (Factory Instrumentation Protocol), PROFIBUS (Process field bus), Bit bus. Interfacing of SCADA with controllers, Basic programming of SCADA, SCADA in PC based Controller / HMI.

#### TEXTBOOK

- 4. G.K.Dubey, Fundamentals of Electrical Drives', Narosa Publication, 2002.
- 5. FrankD.petruzellaprogrammable logic controlsthird edition TATA mc graw-hill edition 2010.
- 6. M.S.Berde, Electric Motor Drives Khanna publishers.2008

#### REFERENCES

- 7. Pradheepkumarsrivastava, Programmable logic controllers with applications', BPB publications.2004.
- 8. John W.Webb, Ronald A.Reis, Programmable logic controllers-Principles and Applications', Fifth Edition, Prentice Hall of India.
- 9. Michel P.Lukas, Distributed Control system', van Nostrand Reinhold Co, 1986
- 10. R.SrinivasanSpecial electrical Machines lakshmi publication.2012
- 11. Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
- 12. Andrew Parr, Industrial drives, Butterworth Heineaman

### **COURSE DESIGNERS**

				- CO - 3543
Sl No	Name of the Faculty	Designation	Department NI	HYA, Mail ID
1	Dr.L.Chitra	Professo205	Dent of Computer S	orchitra@avit.ac.in
2	Dr.R.Devarajan	Professor	EEE/VMKVEC	devarajan@vmkvec.edu.in

204	24004		F	000	AND	NUT	RITI	ON		Ca	tegory	L	Т	Р		Credit
381	21001		L	000	TECI	HNOI	LOGY	Y		0	E-EA	3	0	0		3
<b>PREA</b> The co sensor the imp engine	MBL ourse a y aspe portan ering	E iims to cts, T ce of and pa	o enab o fam food s ackag	ble the iliariz safety, ing in	stude e the s , food food s	nts to studer qualit indust	unden uts abo zy, foo ry.	rstand out the od plan	the procent the same set to the procent the set of the	nysicoc essing a nitatior	hemica and pre 1, food	al, nutri servati laws at	itional, on tech nd regu	micro nique lation	obi s. ' ıs,	ological and To emphasize food
PRER	EQU	ISITE	E – NI	L												
COUR	COURSE OBJECTIVES															
1 U	1 Understand the tradition food processing techniques and the basics concept of food biochemistry															
2 D	² Demonstrate the product development technique, quality and contaminant check															
3 To	o artic	ulate t	their t	echnic	cal kn	owled	lge fo	r indu	strial p	ourpose	e					
4 D	escrib	e natio	onal fo	ood la	ws an	d stan	dards									
5 La	aws an	nd qua	lities	of sta	ndard	for fo	od pro	oducts	5							
COUF	RSE O	OUTC	OME	S												
After t	he suc	cessfi	ul con	npletio	on of t	he co	urse, l	earne	r will t	be able	to					
CO1: R	lecall t	he pro	cessin	g tech	niques	practi	ced in	olden	days a	nd the b	iologica	al proce	ss		R	emember
CO2. Il contam	lustrat inant	e the r	nethod	ls for a	nimal	produ	ct dev	elopm	ent, qua	ality con	ntrol an	d also s	creen th	e	U	nderstand
CO3.Tr	ransfer	the te	chniqu	ies in s	scaling	up fo	r indus	strial n	eeds						А	pply
CO4. 1	nterpro	et and	Troub	leshoo	t instr	uments	s to ma	aintain	accura	cy					А	pply
CO5. E	Develop	o stand	lards f	or food	d addit	ives									A	pply
MAP	PING	WITI	H PR	OGR	AMM	ΕΟ	JTCO	MES	AND	PROC	GRAM	ME SI	PECIFI	C OU	JT	COMES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	-	-	-		-
CO2	-	М	-	-	-	-	-	-	-	-	-	-	-	-		-
CO3	L	M	S	M	L	-	-	-	-	-	-	-	M	L		-
CO4	204 M S S M L S S -															
CU5	COS - S S M M M L S															
5- Sir(	mg; M	i-ivied	ium;	L-LOV	v											

## SYLLABUS

## INTRODUCTION TO FOOD BIOTECHNOLOGY

Introduction, History and scope of food Biotechnology, development and prospects of biotechnology in animal products, ancient and traditional food processing techniques; Biochemical and metabolic pathways of biological systems used in food production.

**METHODS IN FOOD BIOTECHNOLOGY:** Role of biotechnology in productivity of livestock, Modern biotechnological methods and processes in animal product development, chemical and physical factors required for growing microbial cultures in nutritive substrate; Meat species identification, Quality control, Screening products for contaminants

## BIOTECHNOLOGY METHODS IN FOOD PROCESSING Dept. of Computer Science & Engs

Use of biotechnology in the production of food additives, use of biotechnological tools for the processing and preservation and foods of animal origin, use of biotechnology improved enzymes in food processing industry, Basic principles of the industrial use of bio-reactions for production of biomass-upstream and

downstream processing application of microorganisms as starter cultures in meat industry, microbial production of food ingredients; Biosensors and novel tools and their application in food science.

#### FOOD SAFETY & SECURITY:

Consumer concerns about risks and values, biotechnology & food safety, Ethical issues concerning GM foods; testing for GMOs; current guidelines for the production, release and movement of GMOs; Future and applications of food biotechnology in India.

### **TEXT BOOKS:**

- 1. Potter, Norman. M. Food Science, 5th Ed. Springer US
- 2. Manay, S.; Shadakshara Swamy, M., (2004). Foods: Facts and Principles, 4 th Ed. New Age Publishers.
- 3. B. Srilakshmi., (2002) Food Science, New Age Publishers..

## **REFERENCES:**

- 1. Meyer, (2004). Food Chemistry. New Age
- 2. Deman JM. (1990) Principles of Food Chemistry. 2 nd Ed. Van Nostrand Reinhold, NY

3. Ramaswamy H and Marcott M. Food Processing Principles and Applications. CRC Press

### **COURSE DESIGNERS**

00010				
S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.A.Nirmala	Assistant Professor GII	Biotechnology	nirmalabt@avit.ac,in
2	Mrs.C.Nirmala	Associate professor	Biotechnology	nirmala@vmkvec.edu.in

Hitl.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

	20121002	21002 INTRODUCTION TO BIOFUELS													
	30121002	INTROD				0	E-EA	3	0	0	3				
PRI	EAMBLE														
Thi	s course wi	ll provide an	overview of	of existing	energy	utilizati	ion, pro	oduction	and	infrast	ructure. We will				
alsc	cover the	consequences	s of our ene	rgy choice	s on the	e enviro	nment.	The top	oics c	overed	will include the				
che	mistry of	biofuels, the	biology o	of importa	nt feed	lstocks.	the bi	ochemi	cal.	genetic	and molecular				
app	roaches bei	ng develope	d to advan	ce the nex	t gener	ration of	f biofu	els and	the e	econon	nical and global				
imp	acts of biof	uel productio	n.		0						U				
r															
PR	EREQUIS	TE – NIL													
CO	COURSE OBJECTIVES														
1	Students will recognize the types and differences between existing energy resources, understand their														
	procurement and utilization, and their impacts on society and the environment														
2	Students w	ill be knowle	dgeable of t	the existing	and po	otential f	future s	ources o	of rene	ewable	energy, and be				
	able to inte	lligently anal	yze reporte	d aspects o	f the en	nergy and	d renew	able en	ergy f	ïelds.					
			• •	-											
CO	URSE OU'	<b>FCOMES</b>													
Aft	er the succe	ssful complet	tion of the c	ourse, leari	ner will	be able	to								
CO	1. Understa	nd the existin	g and emer	ging bioma	ss to en	nergy tec	chnolog	gies			Remember				
CO	2. Understa	nd the concept	ot of 1 st gene	eration, 2 nd	genera	tion and	advan	ce biofu	els		Understand				
CO	3. Appraise	the techno-e	conomic and	alyses of bi	ofuel co	onversio	on techr	nologies	5		Understand				
CO	4. To articu	late the conc	ept of a bio	refinerv sv	stem an	d be abl	e to de	velop m	aior u	nit	Apply				
ope	operations of an integrated biorefinery														
CO	5. Illustrate	the environm	nental impli	cations							Apply				
MA	PPING W	ITH PROGI	RAMME O	UTCOME	ES ANI	<b>PROC</b>	GRAM	ME SP	ECIF	IC OU	TCOMES				
COS	B PO1 PO	D2 PO3 PO4	PO5 PO6	PO7 PO8	8 PO9	PO10	PO11	PO12 I	PSO1	PSO2	PSO3				

a

COS	roi	102	105	104	105	100	10/	100	109	1010	ron	F012	1301	1302	1303
CO1	S	-	L	-	М	-	S	L	-	-	-	-	S	-	L
CO2	-	S	S	-	М	-	L	-	-	-	-	-	-	S	L
CO3	S	М	-	М	-	М	-	L	L	-	-	-	S	-	L
CO4	-	S	М	-	М	L	L	-	-	-	-	-	-	S	М
CO5	-	-	-	-	-	-	-	S	М	-	-	-	-	-	L
S- Stro	ong; N	I-Mea	lium;	L-Lov	N										

# **SYLLABUS**

# **OVERVIEW OF BIOFUELS**

Generation of biofuels -	Developmen	t of biologi	cal conversion te	echnologies –	Integration of	biofuels into
biorefineries - Energy	security and	supply -	Environmental	sustainability	of biofuels	- Economic
sustainability of biofuels.				NI		
				C		

## **BIODIESEL**

~ ....

BIODIESEL Biodiesel – Microorganisms and raw materials used for microbial Oil production – Treatment of the feedstocks prior to production of the Biodiesel – Current technologies of biodiesel production – Purification of biodiesel; Industrial production of biodiesel – Biodiesel production from single cell oil.

## **BIOETHANOL**

Bioethanol – Properties – Feedstocks – Process technology – Pilot plant for ethanol production from lignocellulosic feedstock – Environmental aspects of ethanol as a biofuel.

#### **BIOMETHANE AND BIOHYDROGEN**

Biomethanol – Principles, materials and feedstocks – Process technologies and techniques – Advantages and limitations – Biological hydrogen production methods – Fermentative hydrogen production – Hydrogen economy – Advantages and limitations.

#### **OTHER BIOFUELS**

Biobutanol production – Principles, materials and feedstocks – Process technologies – Biopropanol – Bioglycerol – Production of bio-oils via catalytic pyrolysis – Life-Cycle environmental impacts of biofuels and Co-products.

#### **TEXT BOOKS:**

**1.** Luque, R., Campelo, J.and Clark, J. Handbook of biofuels production, Woodhead Publishing Limited 2011 2. Gupta, V, K. and Tuohy, M, G. Biofuel Technologies, Springer, 2013 3. Moheimani, N. R., Boer, M, P, M, K, Parisa A. and Bahri, Biofuel and Biorefinery Technologies, Volume 2, Springer, 2015 **REFERENCES:** 

 Eckert, C, A. and Trinh, C, T. Biotechnology for Biofuel Production and Optimization, Elsevier, 2016 2. Bernardes, M, A, D, S. Biofuel production – recent developments and prospects, InTech, 2011

#### **COURSE DESIGNERS**

COURD				
S.No	Name of the	Designation	Department	Mail ID
	Faculty			
1	Dr.A.Balachandar	Assistant Professor – Gr-II	Biotechnology	Balachandar.biotech@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnolgy	sridevi@vmkvec.edu.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

25.2	01000		1	DDINC	IDI F	SOFI	ριο Μ	FDIC	A T		Category	y L	Т	Р	Credit
353/	21003		J	I	NSTRU	UMEN	TATI	ON	AL.		OE-EA	3	0	0	3
PREA	MBL	E .													
To ena Instrur	ble the nents.	e stude	nts to c	levelop	know	ledge o	of prine	ciples,	design	and app	olications	of the	Biom	edical	
PRER	EQUI	SITE -	- NIL												
COUF	RSE O	BJEC	<b>FIVES</b>												
1	To know about bioelectric signals, electrodes and its types.														
2	To kr	now the	e vario	us Biop	otentia	al recon	rding n	nethods	8.						
3	To stu	udy ab	out pat	ient mo	onitorir	ng conc	cept an	d vario	us Phy	siologic	al measu	rement	s metl	nods.	
4	To stu	udy the	e princi	ple of	operati	on blo	od flov	v meter	, blood	l cells co	ounter.				
5	To stu	udy ab	out bio	chemi	cal me	asurem	ents a	nd deta	ils the	concept	of biotel	emetry	and p	atient s	afety.
COUR	DURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1.	Expla	in the o	differei	nt Bio s	signal o	or biop	otentia	1.					Uno	lerstan	1
CO2.	Discu	ss the	workin	g princ	iples o	f diagn	ostic a	and the	rapeuti	c equipr	nents.		Uno	lerstan	ŀ
CO3.	Exam	ine the	variou	ıs instru	uments	like as	s ECG,	EMG,	, EEG,	X-ray n	nachine.		App	oly	
CO4.	Illustr	ate me	dical ii	nstrume	ents ba	sed on	princi	ples an	d appli	cation u	sed in ho	spital.	Ana	ılyze	
CO5.	Analy	ze and	calibra	ate fun	dament	al bior	nedica	l instru	mentat	tion used	d in hospi	ital.	Ana	alyze	
MAPF	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPECI	IFIC O	OUTC	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	2 PSO3
CO1	М			-								L	М		
CO2	М								L			L	М		
CO3	S	S	М	S	М				М			М	М	М	S
CO4	S	М	М	М	L			L	S	L		S	М	S	S
CO5	S	S	М	М	L	М		L	S	L		S	М	S	S
S- Stro	ng; M-	Mediu	ım; L-I	Low			L	I	L	L	<u> </u>		L	1	

## **SYLLABUS**

## **BIOELECTRIC SIGNALS AND ELECTRODES**

CHIH.M Basic medical instrumentation system, Origin of Bioelectric Potential, Recording electrodes – Electrode Tissue interface, Electrolyte – skin interface, Polarization, Skin contact impedance, motion, artifacts. Electrodes – Silver – silver chloride electrodes, electrodes for ECG, electrodes for EEG, pelectrodes for EMG, Electrical conductivity of electrode jellies and creams, Microelectrodes 0 v.M.K.v. Enge. College, Salem.

#### **BIO AMPLIFIER AND BIOMEDICAL RECORDERS**

Bioamplifier, Need for Bioamplifier, Differential amplifier, Instrumentation amplifier, Chopper amplifier, Isolation Amplifier, ECG, EEG, EMG, PCG, EOG, ERG lead system and recording methods, typical waveform.

### PATIENT MONITORING SYSTEM AND NON ELECTRICAL PARAMETERS MEASUREMENTS

System concepts of patient monitoring system, Bedside patient monitoring system, central monitors, Blood pressure measurement, Measurement of temperature, Respiration rate measurement, cardiac output measurement, Measurement of pulse rate, Plethysmography technique.

### **BLOOD FLOW METERS, BLOOD CELL COUNTERS**

Electromagnetic blood flow meter, ultrasonic blood flow meter, Laser Doppler blood flow meter, Types of blood cells, Methods of cell counting, coulter counters, automatic recognition and differential counting.

### **BIO- CHEMICAL MEASUREMENTS AND BIOTELEMETRY AND PATIENT SAFETY**

Ph, Pc02, p02, Phco3 and electrophoresis, colorimeter, spectrophotometer, flame photometer, auto-analyser. Biotelemetry-wireless telemetry, single channel telemetry, multichannel telemetry, multi patient telemetry.

#### **TEXT BOOKS:**

- 1. Khandpur R.S, "Hand-book of Biomedical Instrumentation", Tata McGraw Hill, 2nd Edition, 2003.
- 2. Leslie Cromwell, Fred Weibell J, Erich Pfeiffer. A, **"Biomedical Instrumentation and Measurements"**, Prentice-Hall India, 2nd Edition, 1997.

#### **REFERENCES:**

- 1. John G. Webster, "Medical Instrumentation application and design", John Wiley, 3rd Edition, 1997.
- 2. Carr, Joseph J, Brown, John.M, "Introduction to Biomedical equipment technology", John Wiley and sons, New York, 4th Edition, 1997.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. N.Babu	Professor	BME	babu@vmkvec.edu.in
2	Mr.V.Prabhakaran	Assistant Professor (Gr-II)	BME	prabhakaran.bme@avit.ac.in
3	Mrs. S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.in
4	Ms. Lakshmi Shree	Assistant Professor	BME	lakshmishree.bme@avit.ac.in

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

2522	1000		DI	OSEN	SODS		тра М	SDIC	TDC		Categor	y L	Т	P C	Credit
3532.	1002		DI	USEN	SORS	AND	INAN	SDUC	<b>LUQ</b>		OE-EA	3	0	0	3
PREA The co compo	<b>REAMBLE</b> ne course is designed to make the student acquire conceptual knowledge of the transducers and biological mponents used for the detection of an analyte. The relation between sensor concepts and biological concepts highlighted. The principles of biosensors that are currently deployed in the clinical side are introduced.														
15 mgn		<u>. 1 ne j</u> SITE -	– Nil	les of t	biosens	ors tha	t are c	urrentr	y depio	iyed in t	ne chinica	al side a	are mur	oduced.	
COUF	URSE OBJECTIVES														
1	To us	e the b	asic co	oncepts	of trai	nsducer	rs, elec	trodes	and its	classifi	cation.				
2	To di	scuss t	he vari	ous typ	pes of e	electro	des.								
3	To de	termin	e the r	ecordir	ng of bi	iologic	al com	ponent	s.						
4	To en	nploy t	he kno	wledge	e in ele	ctroche	emical	and op	tical b	iosensoı	·s.				
5	Το οι	tline t	he vari	ous bic	ologica	l comp	onents	using	biosens	sors.					
COUF	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to	)					
CO1.	. Descr	ibe the	worki	ng prin	ciples	of tran	sducer	s.					Und	erstand	
CO2.	. Expla	in the	various	types	of elec	trodes.							Und	erstand	
CO3.	. Utilize	e vario	us FEI	senso	rs for 1	recordi	ng of b	oiologic	al com	ponents	5.		App	ly	
CO4.	. Distin	guish	various	biosei	nsors li	ke elec	troche	mical a	and opt	ical bio	sensors.		Ana	lyze	
CO5.	. Analy	ze the	biolog	ical co	mpone	nts usii	ng bios	sensors	in vari	ious app	lications.	•	Ana	lyze	
MAPI	PING V	VITH	PROC	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	IFIC C	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L		М		М			L			М		М	
CO2	М	L		М		М			L			М		М	
CO3	S	М	L	S		S	М	М	М			М	М	М	М
CO4	S	S	L	S		S	М	М	S			М	М	М	S
CO5	O5 S S L S S M M S S M M S														
S- Stro	ong; M-	Mediu	ım; L-I	Low											
SYLL	SYLLABUS														

**INTRODUCTION:** General measurement system, Transducers and its classification. Resistance transducers, capacitive transducer, Inductive transducer.

212

#### **TRANSDUCERS:**

Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

Temperature transducers, piezoelectric transducers, Piezo resistive transducers, photoelectric transducers.

### **BIO POTENTIAL ELECTRODES:**

Half cell potential, Types of Electrodes –Micro electrodes, Depth and needle electrodes, Surface electrodes, Chemical electrodes, Catheter type electrodes, stimulation electrodes, electrode paste, electrode material.

### **BIOSENSORS:**

Biological elements, Immobilization of biological components, Chemical Biosensor-ISFET, IMFET, electrochemical sensor, chemical fibro sensors.

#### **APPLICATIONS OF BIOSENSORS:**

Bananatrode, blood glucose sensors, non invasive blood gas monitoring, UREASE biosensor, Fermentation process control, Environmental monitoring, Medical applications.

#### **TEXT BOOKS:**

- 1. H.S. Kalsi, "Electronic Instrumentation & Measurement", Tata McGraw HILL, 1995.
- 2. Brain R Eggins, "Biosensors: An Introduction", John Wiley Publication, 1997.
- 3. Shakthi chatterjee, "Biomedical Instrumentation", Cengage Learning, 2013.
- 4. John G Webster, "Medical Instrumentation: Application and design", John Wiley Publications, 2001.

#### **REFERENCES:**

- 1. K.Sawhney, "A course in Electronic Measurements and Instruments", Dhapat Rai & sons, 1991.
- 2. John P Bentley, "Principles of Measurement Systems", 3rd Edition, Pearson Education Asia, (2000 Indian reprint).
- 3. Geddes and Baker, **"Principles of Applied Biomedical Instrumentation"**, 3rd Edition, John Wiley Publications, 2008.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.L.K.Hema	Professor & Head	BME	hemalk@avit.ac.in
2	Dr.N.Babu	Professor	BME	babu@vmkvec.edu.in
3	Mr.V.Prabhakaran	Assistant Professor (Gr- II)	BME	Prabhakaran.bme@avit.ac.in
4	Mrs.S.Vaishnodevi	Assistant Professor	BME	vaishnodevi@vmkvec.edu.i n

## **COURSE DESIGNERS**

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

	INTRODUCTION TO INDUSTRY 4.0	Category	L	Т	Р	Credit
34721002	ANDINDUSTRIAL INTERNET OF THINGS	OE-EA	3	0	0	3

## PREAMBLE

Industry 4.0 and Industrial Internet of Things is the pioneer of today's modern technology. To match the engineering skills with the industry skills this subject will induce and impart the knowledge among the young professionals.

#### **PREREQUISITE: NIL**

#### **COURSE OBJECTIVES**

- 1 Industry 4.0 concerns the transformation of industrial processes through the integration of modern technologies such as sensors, communication, and computational processing.
- 2 Technologies such as Cyber Physical Systems (CPS), Internet of Things (IoT), Cloud Computing, Machine Learning, and Data Analytics are considered to be the different drivers necessary for the transformation.
- 3 Industrial Internet of Things (IIoT) is an application of IoT in industries to modify the various existing industrial systems.
- ⁴ HoT links the automation system with enterprise, planning and product lifecycle.
- 5 Real case studies

## **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Apply & Analyzing the transformation of industrial process by various techniques.	Analyze
CO2. Evaluate the transformation technologies are considered to be the different drivers.	Apply
CO3. Existing industrial systems will adopt the applications of IIoT.	Apply
CO4. Intensive contributions over automation system with enterprise, planning and product life cycle	Analyze

CO5. Analyze of various Real time case studies.														Analyze	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OU												TCOM	1ES		
COS	PO 1	PO2	PO3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO 2	PSO 3
CO1	S	S	М	-	М	-	-	-	-	-	it	M	S	М	-
CO2	S	S	S	М	М	-	-	-	-	$\mathcal{C}$	2.	М	S	М	М
CO3	S	S	S	М	М	-	-	-	-	Dr.	M. NIT	HYM. Head.	S	М	М
CO4	S	S	S	М	М	-	-	214	Dept	of_Con	nputer Sc Engg. Co	ic Bon & licge, Sal	Engys em.	М	М
CO5	S	S	S	S	М	-	-	-	-	-	-	М	S	М	М
S- Stro	ong; M	-Mediu	ım; L-I	Low											

### SYLLABUS

**INTRODUCTION TO INDUSTRY 4.0 ANDINDUSTRIAL INTERNET OF THINGS**Introduction: Sensing & actuation, Communication-Part I, Part II, Networking-Part I, Part II.Industry 4.0: Globalization, The Fourth Revolution, LEAN Production Systems, Cyber Physical Systems and Next Generation Sensors, Collaborative Platformand Product Lifecycle Management

## **INDUSTRIAL INTERNET OF THINGS& IT'S LAYERS**

Cybersecurity in Industry 4.0, Basics of Industrial IoT: Industrial Processes-Part I, Part II, Industrial Sensing & Actuation. IIoT-Introduction, Industrial IoT: Business Model and Reference Architecture: IIoT-Business Models-Part I, Part II, IIoT Reference Architecture-Part I, Part II, Industrial IoT- Layers: IIoT Sensing-Part I, Part II, IIoT Processing-Part I, Part II.

### **IIoT COMMUNICATION**

Communication-Part I, Industrial IoT- Layers: IIoT Communication, IIoT Networking-Part I, Part II, Part III. Industrial IoT: Big Data Analytics and Software Defined Networks: SDN in IIoT-Part I, Part II, Data Center Networks, Industrial IoT

## **IIOT BIG DATA & SDN APPLICATIONS**

Industrial IoT: Security and Fog Computing - Fog Computing in IIoT, Security in IIoT-Part I, Part II, Industrial IoT- Application Domains. Industrial IoT- Application Domains: Healthcare, Power Plants, Inventory Management & Quality Control, Plant Safety and Security (Including AR and VR safety applications), Facility Management.

## **APPLICATIONS & REAL TIME CASE STUDIES**

Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies - Virtual reality lab, Manufacturing industries – part one, Manufacturing industries – part two, Milk processing and packaging industries, Steel technology lab, Student projects – part one, Student projects – part two

### **TEXT BOOKS:**

1. Anandarup Misra, Sudip | Roy, Chandana | Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0, CRC press, 2003.

### **REFERENCE BOOKS:**

1. Gilchrist, Alasdair, "Introduction to IoT", Apress, 2016

2. Gilchrist, Alasdair "IIoT Reference Architecture", Apress, 2016

### **COURSE DESIGNERS**

COURSE	DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L.K.Hema	Prof.&Head/ECE	ECE	hodece@avit.ac.in
2	Dr.T.Muthumanickam	Professor	ECE K	bodece@vmkvec.edu.in

215

Dr. M. NITHYA. - Prof & Head. Dept. of Computer Science & Engg V V Fago College, Salem.

.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

34721002			DESIGN OF ELECTRONIC					Categor	y I		Т	Р		Credi t	
•					EQUIPMENT			OE-EA	3	3	0	0		3	
<b>PREAMBLE</b> The objective of this course is to sensitise a registrant to various aspects of an electronics product. Specifically on non-Electrical aspects like mechanical design and detailing. Starting from a need translated into specifications, leading to design and prototyping and ending up in a manufacturable physical prototype.															
PREREQUISITE – BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING															
COURSE OBJECTIVES															
1	1 To understand the various Concept of Industrial Design process.														
2	To a	pply th	e basic	Conce	pt of el	ectroni	c Produ	ıct	designs me	ethodo	logy.				
3	To c.	lassify	the Co	ncept o	f Ergoi	nomics	& aest	het	tics in prod	uct des	sign.				
4	Tou	ndersta	ind the	Knowl	edge re	egardin	g the de	esi	gn of produ	ict pac	kaging	$\frac{1}{2}$ and w	orking e	enviro	nment.
5	To u	ndersta	ind the	Knowl	edge of	t differ	ent indu	ust	rial standar	d and	value	analysi	s.		
COU	RSE O	UTCO	OMES												
On th	e succe	essful c	omplet	ion of t	the cou	rse, stu	idents v	vill	l be able to						
CO1. aesthe	Visual etics.	ize the	concep	ot for p	roduct	design	with re	spo	ect to ergor	nomics	and	Reme	mber		
CO2.	Analyz	ze, desi	gn and	implei	ment co	ontrol p	anels o	f e	electronic ec	quipme	ents.	Apply			
CO3.	Apply	creati	vity in	the de	esign o	of syste	em by f	for	mulating a	rchitec	ture	Apply	,		
with p	oroper	placem	ent of o	compoi	nents.		ination	to	ahniquaa		luat	Annly			
design	Appiy 1	the c	oncept	01 VIS	sual co	mmun	Ication	te	chinques i	n proc	iuci	Аррту			
CO5.	Apply	the pro	ocess of	value	analysi	is in ex	isting p	oro	duct.			Apply	•		
MAP	PING	WITH	PRO	GRAM	MEO	UTCO	MES A	٨N	D PROGR	RAMN	IE SP	ECIFI	C OUT	COM	ES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Р	PO9	PO1	PO1	PO1	PSO	PSO	PSO
								0		0	1	2	1	2	3
CO1	М	L	-	-	S	-	-	L	М	L	-	-	S	-	-
CO2	М	L	-	М	S	-	-	L	М	L	-	-	S	-	-
CO3	М	L	-	М	S	-	-	L	М	L	-	L	S	-	M
CO4	S	М	L	-	S	-	-	L	М	L	-	L	S	М	M
CO5	S	М	L	_	S	-	-	Ν	L	L	-	L	S	М	Μ
S- Strong; M-Medium; L-Low															
# SYLLABUS

## **MODULE 1: INTRODUCTION**

Introduction to industrial design, Role of industrial design in the domain of industry, Generic product development process, ID process, Product innovations, tools and methods.

## **MODULE 2: PRODUCT PROTOTYPES**

Management of ID process, Product architecture, Structure: standard and non-standard structures. Product prototypes.

## **MODULE 3: PRODUCT DESIGN AND PLANNING**

Electronic product design and development Methodology, Creativity techniques, brainstorming documentation. Product planning: Defining the task, scheduling the task and its execution. Costing and Pricing of Industrial design,

## **MODULE 4: ERGONOMICS**

Ergonomics: Ergonomics of electronic equipments, Ergonomics of control panel design. Use of ergonomics at work places and plant layout. Aesthetics: Elements of aesthetics, aesthetics of control panel design.

## **MODULE 5: CASE STUDIES**

Value engineering, Product quality and design management. Industrial standards, Graphics and packaging

## **TEXTBOOKS:**

1. Carl T. Ulrich, Steven. D. Eppinger," "Product Design and Development", McGraw Hill Companies.

## **REFERENCE BOOKS:**

1. Ernest J Mccormick ,"Human factors in Engineering and Design" -, McGraw-Hill Co.

2. Yammiyavar P," Control Panel Design and Ergonomics", CEDT/IISc Publication.

3. Murrell K, Chapman," Ergonomics: Man in his Working Environment", &Hall. London. Flurschiem C H, "Industrial Design and Engineering Design Design", Council, London and Springer Verlag, 1983

## **COURSE DESIGNERS**

S.No	Name of the Faculty	Designation	Departme nt	Mail ID
1	Mr.Rajat Kumar Dwibedi	Assistant Professor	ECE	rajatkumar.ece@avit.ac.in
2	Dr. L.K.Hema	Prof. & Head/ ECE	ECE	hodece@avit.ac.in
3	Mr.G.Murali	Assistant Professor	ECE	muralig@vmkvec.edu.in

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

35021R01	PROJECT WORK	Category	L	Т	Р	Credit
		PI-P	0	0	16	8

## PREAMBLE

This course enables the students to exercise some of the knowledge and/or skills developed during the programme to new situation or problem for which there are number of engineering solutions. This course include planning of the tasks which are to be completed within the time allocated, and in turn, helps to develop ability to plan, , use, monitor and control resources optimally and economically. By studying this course abilities like creativity, imitativeness and performance qualities are also developed in students. Leadership development and supervision skills are also integrated objectives of learning this course.

PRER	PREREQUISITE – Nil														
COUI	RSE O	BJEC	ΓIVES	5											
1	To de	evelop	quality	v softwa	are solı	ution.									
2	To in system	volve i ms ana	n all th lysis, s	ne stage systems	es of th s design	e softv n, softv	vare de vare de	velopn evelopr	nent lif nent, te	e cycle lesting str	like requ rategies	irement and doc	ts engin umenta	eering, tion.	
3	To ur	ndersta	nd and	gain th	ne knov	wledge	of the	princip	ples of	software	e engine	ering pr	actices.		
4	To Get good exposure and command in one or more application areas and on the software.														
5	То ра	articipa	te and	manag	e a larg	ge soft	ware en	ngineer	ring pro	ojects in	future.				
COUI	RSE O	UTCO	MES												
On the successful completion of the course, students will be able to															
1.	1. Describe the Systems Development Life Cycle (SDLC). Apply														
2.	2. Design of Modules. Apply														
3.	3. Perform coding. Apply														
4.	4. Analyze and Apply various types of testing techniques and prepare documentation. Apply														
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCC	MES	AND I	PROG	RAMM	E SPEC	CIFIC C	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	М	-	-	S	-	S	-	М	М	М
CO2	S	S	М	М	S	М	-	-	S	-	М	-	S	S	S
CO3	L	М	L	L	М	М	-	-	М	-	L	-	М	М	М
CO4	S	S	М	L	S	М	-	-	S	-	S	-	М	М	М
S- Stro	ong; M	-Mediu	ım; L-I	Low									1		
•	Not n	nore that	an one	studen	t is per	mitted	to wor	k on a	project						
•	• Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.														
•	Title	of the p	oroject	should	be kep	ot the s	ame th	roughc	out the	project.	Nit	.M			

218

## **Guidelines for preparing the Project Dissertation**

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include them in your project report.

## Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

## **Project execution:**

Execute project preparation activities as per work allocation matrix.

## **Documentation and presentation:**

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.
- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carried out.
- q. Details of rework / rectifications carried out.
- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as per Annexure-V.
- x. Presentation including moments at work-video/photographs in action

H.M

#### Notes:

Prepare project report with MS Office with following guidelines. PAGE: A4 (ON ONE SIDE). MARGINN: TOP :15mm. BOTTOM :15mm. RIGHT :15mm. LEFT :30mm. FONT: ARIAL. 12-BOLD, CONTENT12, SIZE: SPACING 18 POINTS, **HEADER**: TITLE OF THE PROJECT, PAGE NUMBER ON TOP RIGHT. ACADEMIC YEAR, SHORT FOOTER: NAME OF THE INSTITUTE SUGGESTED LEARNING RESOURCES. 1. Use of Library. Reference books. 2. 3. Hand books. Encyclopedia. 4. Magazines. 5. Periodicals. 6.

- 7. Journals.
- 8. Visits of industry, organizations related as per the requirement.
- 9. Internet.

## **COURSE DESIGNERS**

S.No ·	Name of the Faculty	Designation	Department	Mail ID
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in
2	Dr.S.Rajaprakash	Associate professor	CSE	rajaprakash@avit.ac.in.

N. Hit

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

3702	21M81 MINI PROJECT Category								y L	Т	Р	Credit			
0102							JLCI				PI-M	0	0	6	3
<b>PREA</b> softwa	MBLE The pr re	E •imary	empha	sis of	the pro	oject w	ork is	to und	erstand	and ga	in the k	nowledg	ge of th	e princi	ples of
Engine	eering p	oractico	es, so a	is to pa	rticipa	te and	manag	e a larg	ge softw	vare eng	ineering	g project	s in fut	ure.	
PRER	PREREQUISITE – Nil														
COUF	COURSE OBJECTIVES														
1	1 To develop quality software solution.														
2	To in system	volve i ms ana	in all th lysis, s	ne stage ystems	es of th s design	e softw n, softw	vare de vare de	velopn velopn	nent life nent, te	e cycle I esting str	like requ rategies	irement and doc	ts engin sumenta	eering, tion.	
3	To understand and gain the knowledge of the principles of software engineering practices.														
4	To Get good exposure and command in one or more application areas and on the software.														
5	То ра	rticipa	te and	manag	e a larg	ge softv	ware ei	ngineer	ring pro	jects in	future.				
COUF	RSE O	UTCO	MES												
On the	he succ	essful	comple	etion o	f the co	ourse, s	student	s will t	be able	to					
5.	Descri	be the	Systen	ns Dev	elopme	ent Life	e Cycle	e (SDL	C).				App	ly	
6.	Design	n of Mo	odules.										App	ly	
7.	Perfor	m codi	ng.										App	ly	
8.	Analyz	ze and	Apply	variou	s types	of test	ing tec	hnique	es and p	orepare o	documer	ntation.	App	ly	
MAPH	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPEC	CIFIC (	OUTCO	OMES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	L	S	М	-	-	S	-	S	-	М	М	М
CO2	S	S	М	М	S	М	-	-	S	-	М	-	S	S	S
CO3	L	М	L	L	М	М	-	-	М	-	L	-	М	М	М
CO4	S	S	М	L	S	М	-	-	S	-	S	-	М	М	М
S- Stro	ong; M-	Mediu	ım; L-I	Low											

- Individual / not more than one student is permitted to work on a project.
- Each Student should be involved in each and every phase of Project Development. If it is found that student is not involved in any phase; for example coding phase, it may lead to the rejection/disqualifying of the project at any stage.
- Title of the project should be kept the same throughout the project.

## **Guidelines for preparing the Project Dissertation**

This document lists the contents required for the academic project report done as part of the MCA Curriculum. Section names have been listed with description. The descriptions have been provided in italics. Important: This page and the text in italics present throughout this document are to give you guidance. Please do not include

them in your project report.

## Work allocation matrix:

Prepare work allocation matrix along with provision of follow-up remarks and notes.

## **Project execution:**

Execute project preparation activities as per work allocation matrix.

## **Documentation and presentation:**

Documentation of final project report which includes following in sequence.

- a. Title page-(Suggested as per Annexure-II.)
- b. Certificate As per Annexure-III.
- c. Index.
- d. Preface/Acknowledgement.
- e. Course outcomes.
- f. Project title.
- g. Assembly and detail production drawings.
- h. List of activities (suggested as per Annexure IV) and work allocation matrix.

222

- i. Plant layout with dimensions.
- j. List and specifications of machineries, equipments and tools.
- k. Bill of material with make or buy decision.
- 1. Specifications of bought out parts.
- m. Process sheets-As per format given in course Industrial engineering.
- n. Flow process charts.
- o. Specification and consumption of consumables.
- p. Details of inspection / testing carried out.
- q. Details of rework / rectifications carried out.

AH.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

- r. Cost estimation.
- s. Monitoring and control report/sheet.
- t. Notes on troubleshooting.
- u. Notes on individual achievement of skills / experience /problems / solutions.
- v. References.
- w. Day to day logbook as per Annexure-V.
- x. Presentation including moments at work-video/photographs in action

N	ntes
1.1	ucs.

	Prepare project report with MS Office with following guidelines.											
	PAGE:		A4 (ON ONE S	SIDE).								
	MARGINN		TOP :15mm.									
			BOTTOM :15	mm.								
			RIGHT :15mn	RIGHT :15mm.								
			LEFT :30mm.									
	FONT:		ARIAL.									
	SIZE:		12-BOLD, CO	NTENT12,								
			SPACING 18	POINTS,								
	HEADER:		TITLE OF TH	E PROJECT,								
			PAGE NUMB	ER ON TOP								
			RIGHT.									
	FOOTER:		ACADEMIC Y	YEAR, SHORT								
			NAME OF TH	IE INSTITUTE								
SUGG	ESTED LEARNING RES	OURCES.										
	1	Use of Library										
	2	Reference books										
	3	. Hand books.										
	4	. Encyclopedia.										
	5	. Magazines.										
	6	. Periodicals.										
	7	. Journals.										
	8	. Visits of industry, o	organizations related	as per the requirement.								
	9	. Internet.	C	<b>A</b>								
COUR	RSE DESIGNERS											
S.No	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.M.Nithya	Professor	CSE	hodcse@vmkvec.edu.in								
2	Mr. K.Karthik	Associate Professor	CSE	karthik@avit.ac.in								
	1	1	C	Nitt.M								

37021T81	INTERNSHIP	Category	L	Т	Р	Credit
		PI-IT	0	0	0	3
DDDLLD	<b>P</b>					

#### PREAMBLE

The Engineering Internship course is a Canvas-based course that offers students the opportunity to explore and develop their careers through professional practice. The structured plan of education impacts student work readiness through a number of professional development skill-building activities, including goal setting; analysis and reflection; feedback from employer; informational interviewing and debriefing their experience.

## **PREREQUISITE: NIL**

## **COURSE OBJECTIVES**

1. An understanding of how liberal arts coursework ties to professional careers of interest.

- Gain insight into a possible career path of interest while learning about the industry in which 2. the organization resides, organizational structure, and roles and responsibilities within that structure.
- 3. Develop professional connections and identify a strategy for maintaining those connections **COURSE OUTCOMES**

On the successful completion of the course, students will be able to

CO1. Add details about your experience including new skills developed and results obtained .	Understand
CO2. Analyze your internship experience, reflecting on lessons learned	Apply

and how your liberal arts education prepared you for the internship.

CO3. Identification of additional skills that will need to be developed to Apply ensure career readiness.

## MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC **OUTCOMES**

COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO1</b>	PO11	PO12	PSO1	PSO2	PSO3
										0					
CO1	S	Μ	S	L	S	-	L	L	S	L	S	-	М	Μ	М
CO2	S	S	Μ	М	S	Μ	L	L	Μ	Μ	М	-	S	S	S
CO3	L	Μ	Μ	L	М	Μ	L	L	Μ	L	L	-	Μ	Μ	М
S- Stro	S- Strong; M-Medium; L-Low														
	-														

Witt.M

Dr. M. NITHYA Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

# General Procedure <u>Final Reflection Report:</u>

## I. <u>General Information Section</u>

Explain your role and how your work contributed to the company

## II. <u>Technical Skills</u>

Document the technical experiences you had during your work experience and discuss technical problems that you assisted in solving

## III. <u>Development of Professional Skills</u>

Describe team and leadership building opportunities on the job

## IV. Assessments

- Discuss whether or not you met goals set out by your supervisor or that you set for yourself
- Evaluate your performance of assigned projects, noting both areas of strength and improvement

## V. <u>Conclusion</u>

- Summarize by addressing the impact of the work experience on your education and career goals
- Provide two "lessons learned" to share with any student that is considering an internship

COURSE DESIGNERS												
S.No	Name of the Faculty	Designation	Name of the College	Mail ID								
1.	Dr.M.Nithya	Professor	CSE/VMKVEC	hodcse@vmkvec.edu.in								
2.	Dr.S.Rajaprakash	Associate professor	CSE/AVIT	rajaprakash@avit.ac.in.								

Nitt.M

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs Y.M.K.V. Engg. College, Salem.

## YOGA AND MEDITATION - 34121Z81

Course Objective: To gain knowledge about the Yogic Practices Course Outcomes:

Students should be able to

- Evaluate the importance of preparatory exercise.
- Demonstrate the suryanamaskar and various asanas.
- Utilize the meditation techniques.
- Compare mudras and bandhas
- Assess the difference between the asanas and physical exercises.

### UNIT - I

History of Yoga - Definition and Meaning of the term Yoga - Comprehensive Natureand Scope of Yoga-Aims and Objectives of Yoga

Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

### UNIT – II

Stream of Yoga: Karma yoga- Raja yoga- Jnana Yoga - Bhakti yoga - Differencebetween practice of Asanas and Physical Exercise.

#### Text books:

- 1. Light on Yoga, B.K.S Iyengar Harpine Collins Publication, New Delhi, 2000.
- 2. Sound Health Through Yoga, K.Chandrasekaran, Prem Kalyan Publications, Sedapatti,
- 1999.

#### UNIT – III

Asanas Practice: - Suryanamaskar - Meditative Asanas: Sukhasana – Ardha Padmasana – Padmasana – Vajrasana – Standing Asanas: Tadasana – Trikonasana - Parivrtta Trikonasana – Vrikshasana – Sitting Asanas: Baddha konasana – Janusirasana – Paschimottanasana – Ustrasana – Vakrasana – Gomukhasana.

#### Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

## UNIT: IV

Asanas Practice: Prone Asanas: Makarasana – Bhujangasana – Sasangasana- Shalabhasana – Dhanurasana - Supine Asanas: Pavanamuktasana – Artha Halasana - Sethubandasana – Navasana – Savasana.

#### Text books:

- 1. H R.Nagarathnam & Dr.H R Nagendra (2015) Promotion of positive health swami vivekanandha yoga prakashana, Banglore.
- 2. The Classic Guide to Yoga, Dr.G.S.Thangapandiyan, Sports Publication, New Delhi(2020).

#### UNIT- V

N. Hit

Pranayama Practice: Sectional Breathing - Nadisuddhi - Bhramari - Bhastrika - Kapalabhati - Introduction to Bandhas - Mudras

226

Dr. M. NITHYA, — Prof & Head. Dept. of Computer Science & Engs V.M.K.V. Engg. College, Salem. - Dharana (Trataka) - Dhyana.

#### Text books:

1. Swami Satyananda Saraswati, (2008): Asana Pranayama Mudra, Bandha (IV Revised Edition): Bihar School of Yoga, Munger, India.

#### **Reference books:**

- 1. Asanas, Swami Kuvalayananda, Kaivalayadhama, Lonavla, 1993.
- 2. Yoga for All, Maharishi Patanjali, Sahni Publications, 2003.
- 3. Yoga for Health, Institute of Naturopathy & Yogic Sciences, Bangalore, 2003.
- 4. Yoga for Health, K.Chandara Shekar, Khel Sahitya Kendra, Theni, 2003.
- 5. Yoga for the Morden Man, M.P.Pandit, Sterling Publishers Private Limited, NewDelhi, 1987.
- 6. Yoga for You, Indira Devi, Jaico Publishing House, Chennai, 2002.

#### Web Resources

- 1. https://kdham.com/
- 2. http://www.biharyoga.net/

With M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

34121Z82	Gender Equity and	Category	L	Т	Р	Credit				
	Law (Common to all Branches)	AC	0	0	2	0				
Gender Equity is the provision of fairness and justice in the distribution of benefits and responsibilities between										

,Men, Women, Transgender, and Gender non-binary individuals. Gender equity is important because, historically, societies around the world have deemed females, transgender people, and nonbinary people as "weaker" or less important than males.Gender equity emphasizes respecting individuals without discrimination, regardless of their gender. There are legal provisions thataddress issues like inequalities that limit a person's ability to access opportunities to achieve better health, education, and economic opportunity based on their gender.

## **PREREQUISITE: NIL**

1	To sensitize the students regarding the issues of gender and the gender inequalities prevalent insociety.
2	To raise and develop social consciousness about gender equity among the students.
3	To build a dialogue and bring a fresh perspective on transgender and gender non- conforming individuals.
4	To create awareness among the students and to help them face gender stereotype issues.
5	To help the students understand the various legal provisions that are available in our society.
COURSE	COUTCOMES

On the successful completion of the course, students will be able to

CO1.Understand the importance of gender equity	Understand			
CO2.Initiate the awareness and recognize the social responsibility with regards to gender equity.	Apply			
CO3.To develop a sense of inclusiveness and tolerance towards various genders without any discrimination.	Apply			
CO4. To evaluate the social issues and apply suitable gender-related regulations for inclusive living.	Evaluate			
CO5.To identify and analyze the existing gender inequality problems faced in various institutions.	Analyse			
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES				

COS	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PS	PS
														02	03
CO1	S	Μ	L	-	-	S	S	S	-	-	-	S	-	-	-
CO2	S	Μ	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO3	S	L	Μ	-	-	S	S	S	-	-	-	S	-	-	-
CO4	S	S	S	L	-	S	S	S	-	-	-	S	-	-	-
CO5	S	S	S	Μ	-	S	S	S	-	-	-	S	-	-	-
S Str	S. Strong: M. Medium: I. I. ov														

S- Strong; M-Medium; L-Low

## **SYLLABUS**

## **UNIT -I INTRODUCTION TO GENDER AND SEX**

Definition of Sex - Definition of Gender - Sex Vs. Gender - Social Construction of Gender and Gender Roles -GenderStereotypes - Gender Division of Labour - Patriarchy, Masculinity and Gender Equality -Feminism and Patriarchy.

### UNIT -- II - GENDER BIAS 6 hrs

Introduction to Gender Inequality in India - Gender Bias in Media - Misleading Advertisement And

Poor Portrayal of Women and gender non-conforming individuals- Objectification of Women, Transgender, and gender non-conforming individuals - Differential Treatment of Women, Transgender, Exploitation Caused by Gender Ideology - Female Infanticide - Honor Killing.

**UNIT –III GENDER SENSITIZATION AND INTERNATIONAL CONVENTIONS** 

**6hrs** 

6hrs

Nitt.M

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engy V.M.K.V. Engg. College, Salem.

**Gender Sensitization** -Need and Objective - Gender Sensitivity Training at Workplace – GenderSensitization in Judiciary - Gender Sensitization in School Curriculum.

## **UNIT-IV - SEXUAL OFFENCES AGAINST WOMEN**

Indian Penal Code, 1860 - S., 304B, 354, 354C, 354d, 376, 498A & 509 - The ImmoralTrafficPrevention Act 1986 - The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013 - Protection of Women from Domestic Violence Act, 2005- Indecent Representation of Women Act, 1986.

## UNIT-V ROLE OF GOVERNMENT FOR INCLUSIVE DEVELOPMENT

Initiatives of NCERT -Role of Ministry of Women and Child Development - Governmental Initiatives: Beti BachaoBeti Padhao (BBBP) - Ujjawala Scheme - Working Women Hostels (WWH), National Council for Transgender Persons.

## TEXT BOOKS

- 1. IGNOU: Gender Sensitization: Society, Culture and Change (2019) BGSE001, New Delhi IGNOU
- 2. Jane Pilcher and Imelda Whelehan (2005): Fifty Key Concepts in Gender Studies

# **REFERENCES:**

1. Women's Empowerment & Gender Parity: @Gender Sensitization, Dr. Shikha Bhatnagar, Repro Books (2020).

2. Gender Sensitization: Issues and Challenges, Anupama Sihag Raj Pal Singh, Raj Publications (2019).

3. Violence Against Women: Current Theory and Practice in Domestic Abuse, Sexual Violence, and Exploitation (Research Highlights in Social Work), Jessica Kingsley Publishers (2012).

4. Gill, Rajesh, Contemporary Indian Urban Society- Ethnicity, Gender and Governance, BookwellPublishers, New Delhi (2009).

5. Sexual Violence Against Women: Penal Law and Human Rights Perspectives, Lexis Nexis (2009) 6.

Chatterjee, Mohini, Feminism and Gender Equality, Aavishkar, Jaipur, 2005.

7. Mies, Maria, Indian Women and Patriarchy, Concept Publishing Company, New Delhi, 2004.

COURSE	COURSE DESIGNERS					
S.No.	Name of the Faculty	Mail ID				
1.	Gnana Sanga Mithra.S	sangamithra@avil.edu.in				
2.	Aarthy.G	aarthy@avil.edu.in				

## 6 hrs

6hr

34121Z83	ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE	Category	L	Т	Р	С
		AC	0	0	2	0

## **Course Objectives :**

- 1. To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system.
- 2. To make the students understand the traditional knowledge and analyse it and apply it to their day to day life

## **Course Outcomes :**

At the end of the Course, Student will be able to:

- 1. Identify the concept of Traditional knowledge and its importance.
- 2. Explain the need and importance of protecting traditional knowledge.
- 3. Illustrate the various enactments related to the protection of traditional knowledge.
- 4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
- 5. Explain the importance of Traditional knowledge in Agriculture and Medicine.

## UNIT-I:

**Introduction to traditional knowledge:** Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge

## UNIT-2:

**Protection of traditional knowledge:**The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

## UNIT-3:

**Legal framework and TK:** The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act); The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016.

## UNIT-4:

**Traditional knowledge and intellectual property:** Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge

## UNIT-5:

**Traditional Knowledge in Different Sectors:** Traditional knowledge and engineering, Traditional medicine system, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK

231

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg Y.M.K.V. Engg. College, Salem.

## **Text Books:**

1. Traditional Knowledge System in India, by Amit Jha, 2009.

## **Reference Books:**

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

## Web Links:

1.https://www.youtube.com/watch?v=LZP1StpYEPM

M. Hith

Dr. M. NITHYA, Prof & Head. Dept. of Computer Science & Engg V.M.K.V. Engg. College, Salem.

24121704		Category	L	Т	Р	C
34121204	INDIAN CONSTITUTION	AC	0	0	2	0

### **Course Objectives:**

On completion of this course, the students will be able:

1 To understand the nature and the Philosophy of the Constitution.

2 To understand the outstanding Features of the Indian Constitution and Nature of the Federal system.3

To Analyse Panchayat Raj institutions as a tool of decentralization.

4 To Understand and analyse the three wings of the state in the contemporary scenario.5

To Analyse Role of Adjudicatory Process.

5 To Understand and Evaluate the recent trends in the Indian Judiciary.

### **Course Content**

## The Constitution - Introduction

The Historical background and making of the Indian Constitution – Features of the Indian Constitution- Preamble and the Basic Structure - Fundamental Rights and Fundamental Duties – Directive Principles State Policy

### **Government of the Union**

The Union Executive- Powers and duties of President –Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

### **Government of the States**

The Governor -Role and Powers - Cheif Minister and Council of Ministers- State Legislature

### Local Government

The New system of Panchayats , Municipalities and Co-Operative Societies

#### Elections

Powers of Legislature -Role of Chief Election Commissioner-State Election Commission

## **TEXTBOOKS AND REFERENCE BOOKS:**

1 Ethics and Politics of the Indian Constitution Rajeev Bhargava Oxford University Press, New Delhi, 20082

The Constitution of India B.L. Fadia Sahitya Bhawan; New edition (2017)

3 Introduction to the Constitution of India DD Basu Lexis Nexis; Twenty-Fourth 2020 edition Suggested.

## **Total Hours: 30 hours**

## Software/Learning Websites:

- 1. https://www.constitution.org/cons/india/const.html
- 2. <u>http://www.legislative.gov.in/constitution-of-india</u>
- 3. https://www.sci.gov.in/constitution

4. https://www.toppr.com/guides/civics/the-indian-constitution/the-constitution-of india/

## Alternative NPTEL/SWAYAM Course:

S.NO	NPTEL ID	NPTEL Course Title	Course Instructor
1	12910600	CONSTITUTION OF INDIA AND ENVIRONMENTAL GOVERNANCE: ADMINISTRATIVE AND ADJUDICATORY PROCESS	PROF. M. K. RAMESH NATIONAL LAW SCHOOL OF INDIA UNIVERSITY

COURSE DESIGNER								
S.NO	NAME OF THE FACULTY	DESIGNATI ON	NAME OF THE of Compu- INSTITUTION K. V. En	gg. College, Salem.				
1	Dr.Sudheer	Principal	AV School of Law	Sudheersurya18@gmai l.com				